Summary Several models explain how a complex integrated system like the rodent mandible can arise from multiple developmental modules. The models propose various integrating mechanisms, including epigenetic effects of muscles on bones. We test five for their ability to predict correlations found in the individual (symmetric) and fluctuating asymmetric (FA) components of shape variation. We also use exploratory methods to discern patterns unanticipated by any model. Two models fit observed correlation matrices from both components: (1) parts originating in same mesenchymal condensation are integrated, (2) parts developmentally dependent on the same muscle form an integrated complex as do those dependent on teeth. Another fits the correlations observed in FA: each muscle insertion site is an integrated unit. However, no model fits well, and none predicts the complex structure found in the exploratory analyses, best described as a reticulated network. Furthermore, no model predicts the correlation between proximal parts of the condyloid and coronoid, which can exceed the correlations between proximal and distal parts of the same process. Additionally, no model predicts the correlation between molar alveolus and ramus and/or angular process, one of the highest correlations found in the FA component. That correlation contradicts the basic premise of all five developmental models, yet it should be anticipated from the epigenetic effects of mastication, possibly the primary morphogenetic process integrating the jaw coupling forces generated by muscle contraction with those experienced at teeth.
Warming and Shrinking In most mammals, individual body sizes tend to be smaller in warmer regions and larger in cooler regions. Secord et al. (p. 959 ; see the Perspective by Smith ) examined a high-resolution 175,000-year record of equid fossils deposited over a past climate shift—the Paleocene-Eocene Thermal Maximum—for changes in body size. Using oxygen isotopes collected from the teeth of co-occurring mammal species to track prevailing environmental temperature, a clear decrease in equid body size was seen during 130,000 years of warming, followed by a distinct increase as the climate cooled at the end of the period. These results indicate that temperature directly influenced body size in the past and may continue to have an influence as our current climate changes.
The mammalian mandible is a developmentally modular but functionally integrated system. Whether morphological integration can evolve to match the optimal pattern of functional integration may depend on the developmental origin of integration, specifically, on the role that direct epigenetic interactions play in shaping integration. These interactions are hypothesized to integrate modules and also to be highly conservative, potentially constraining the evolution of integration. Using the fox squirrel (Sciurus niger) mandible as a model system, we test five a priori developmental hypotheses that predict mandibular integration and we also explore for correlations between shapes of mandibular regions not anticipated by any of the developmental models. To determine whether direct epigenetic interactions are highly conserved in rodents, we examine the correlation structure of fluctuating asymmetry, and compare integration patterns between fox squirrels and prairie deer mice (Peromyscus maniculatus bairdii). In fox squirrels, we find a correlation structure unanticipated by all a priori developmental models: adjacent parts along the proximodistal jaw axis are correlated whereas more distant ones are not. The most notable exception is that the shape of the anterior incisor alveolus is correlated with the shape of the ramus (FA component) or coronoid (symmetric component). Those exceptions differ between species; in prairie deer mice, the molar alveolus is connected to more parts, and the incisor alveolus to fewer, than in fox squirrels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.