American education policy seems poised to escalate and shift its two decade long commitment to standards and outcome-based reform. That commitment has involved a set of "grand bargains", in which the federal government provides Title I (The "No Child Left Behind Act" or NCLB) disadvantaged education funds in return for the states' agreeing to set ambitious content standards, and define performance or "proficiency" standards associated with them that all students in the states' schools will be expected to meet by the 2013/ 2014 school year. The disadvantaged children targeted by Title I are expected to meet the same standards as all of the rest of the children in each state. In return for agreeing to hold their schools accountable for meeting these expectations, the states are left free to set their standards and their related measures of proficiency as they wish, within some broadly defined parameters. And the local school systems and schools in each state, in return for their share of the Title I/NCLB money are left free, for the most part, to choose their preferred approaches to instruction as long as they agree to be held accountable for ensuring that all their students are making adequate progress towards meeting the state's proficiency goals. So, the general form of each bargain is an agreement to reduce or forgo regulation of inputs in return for a commitment to define, and meet, outcome expectations.But, having agreed to do something they had never before tried to do-to succeed with essentially all students-schools and educators face the problem that they don't know how to meet their side of the bargain. Proponents and observers of reform claim to be shocked that some states are setting their performance standards in ways that minimize or disguise the degree to which their students are likely to fail to meet the hopes of reform. In addition, schools and teachers are resorting to approaches, such as relentless test preparation and focusing on students who are just at the edge of meeting proficiency requirements, that try to meet the letter of the bargains' requirements while leaving the more ambitious spirit of the reforms' hopes well behind, along with all too many children. Established in 1985, CPRE unites researchers from seven of the nation's leading research institutions in e orts to improve elementary and secondary education through practical research on policy, nance, school reform, and school governance. CPRE studies alternative approaches to education reform to determine how state and local policies can promote student learning. e Consortium's member institutions are the
Over the past several decades, there has been a tremendous growth in our understanding of genetic phenomena and the intricate and complicated mechanisms that mediate genetic effects. Given the complexity of content in modern genetics and the inadequacy of current instructional methods and materials it seems that a more coherent and extensive approach to teaching modern genetics is needed. Learning progressions provide such an approach by describing the learning of core concepts in a domain as it unfolds over multiple grades and grade bands. In this paper we suggest a learning progression for modern genetics that spans grades 5-10. We describe the learning progression in terms of three key aspects of teaching and learning modern genetics: (1) the big ideas in modern genetics, and the knowledge and abilities that students should master by the end of compulsory education; and (2) the progression of learning that students are expected to make over several grades; and (3) the identification of learning performances and development of assessments for the proposed progression. We conclude by identifying the implications for instruction and research that stem from our analysis of the research base in genetics education, and our development of a theoretical progression for learning the big ideas in modern genetics. ß
American education policy seems poised to escalate and shift its two decade long commitment to standards and outcome-based reform. That commitment has involved a set of "grand bargains", in which the federal government provides Title I (The "No Child Left Behind Act" or NCLB) disadvantaged education funds in return for the states' agreeing to set ambitious content standards, and define performance or "proficiency" standards associated with them that all students in the states' schools will be expected to meet by the 2013/ 2014 school year. The disadvantaged children targeted by Title I are expected to meet the same standards as all of the rest of the children in each state. In return for agreeing to hold their schools accountable for meeting these expectations, the states are left free to set their standards and their related measures of proficiency as they wish, within some broadly defined parameters. And the local school systems and schools in each state, in return for their share of the Title I/NCLB money are left free, for the most part, to choose their preferred approaches to instruction as long as they agree to be held accountable for ensuring that all their students are making adequate progress towards meeting the state's proficiency goals. So, the general form of each bargain is an agreement to reduce or forgo regulation of inputs in return for a commitment to define, and meet, outcome expectations.But, having agreed to do something they had never before tried to do-to succeed with essentially all students-schools and educators face the problem that they don't know how to meet their side of the bargain. Proponents and observers of reform claim to be shocked that some states are setting their performance standards in ways that minimize or disguise the degree to which their students are likely to fail to meet the hopes of reform. In addition, schools and teachers are resorting to approaches, such as relentless test preparation and focusing on students who are just at the edge of meeting proficiency requirements, that try to meet the letter of the bargains' requirements while leaving the more ambitious spirit of the reforms' hopes well behind, along with all too many children. Established in 1985, CPRE unites researchers from seven of the nation's leading research institutions in e orts to improve elementary and secondary education through practical research on policy, nance, school reform, and school governance. CPRE studies alternative approaches to education reform to determine how state and local policies can promote student learning. e Consortium's member institutions are the
The hypothetical learning progressions presented here are the products of the deliberations of two working groups of science education researchers, each group also including a state science curriculum supervisor, organized by the Consortium for Policy Research in Education (CPRE),with support from the National Science Foundation. Their charge was to produce hypothetical learning progressions describing the pathways students might be expected to follow as they acquire deep understanding of two of the core learning goals set by the National Research Council's (NRC) Committee on a Conceptual Framework for the New K-12 Science Education Standards. The goals in question address students' understanding of the structure, properties, and transformations of matter in the physical sciences and of the flow of matter and energy in ecosystems in the life sciences. These two core goals were chosen because a good bit of research has been done on children's learning in these areas, some of it carried out by members of our working groups. These hypothetical learning progressions are intended to inform those who are working on the new national science standards, to serve as tools for those charged with developing curriculum and assessments to implement the new standards, and to encourage others to undertake the theoretical and empirical work needed to fill important gaps in our knowledge about learning progressions. Disciplines Curriculum and Instruction | Educational Assessment, Evaluation, and Research | Science and Mathematics Education CommentsView on the CPRE website. The research presented in this report was funded by a National Science Foundation (NSF) grant (DRL-1051144) to the Consortium for Policy Research in Education (CPRE). Opinions expressed in this report are those of the authors and do not necessarily reflect the views of the NSF, CPRE, or its institutional members. 1 PrefaceThe hypothetical learning progressions presented here are the products of the deliberations of two working groups of science education researchers, each group also including a state science curriculum supervisor, organized by the Consortium for Policy Research in Education (CPRE), with support from the National Science Foundation. Their charge was to produce hypothetical learning progressions describing the pathways students might be expected to follow as they acquire deep understanding of two of the core learning goals set by the National Research Council's (NRC) Committee on a Conceptual Framework for the New K-12 Science Education Standards. The goals in question address students' understanding of the structure, properties, and transformations of matter in the physical sciences and of the flow of matter and energy in ecosystems in the life sciences. These two core goals were chosen because a good bit of research has been done on children's learning in these areas, some of it carried out by members of our working groups. These hypothetical learning progressions are intended to inform those who are working on the new national science ...
The hypothetical learning progressions presented here are the products of the deliberations of two working groups of science education researchers, each group also including a state science curriculum supervisor, organized by the Consortium for Policy Research in Education (CPRE),with support from the National Science Foundation. Their charge was to produce hypothetical learning progressions describing the pathways students might be expected to follow as they acquire deep understanding of two of the core learning goals set by the National Research Council's (NRC) Committee on a Conceptual Framework for the New K-12 Science Education Standards. The goals in question address students' understanding of the structure, properties, and transformations of matter in the physical sciences and of the flow of matter and energy in ecosystems in the life sciences. These two core goals were chosen because a good bit of research has been done on children's learning in these areas, some of it carried out by members of our working groups. These hypothetical learning progressions are intended to inform those who are working on the new national science standards, to serve as tools for those charged with developing curriculum and assessments to implement the new standards, and to encourage others to undertake the theoretical and empirical work needed to fill important gaps in our knowledge about learning progressions. Disciplines Curriculum and Instruction | Educational Assessment, Evaluation, and Research | Science and Mathematics Education CommentsView on the CPRE website. The research presented in this report was funded by a National Science Foundation (NSF) grant (DRL-1051144) to the Consortium for Policy Research in Education (CPRE). Opinions expressed in this report are those of the authors and do not necessarily reflect the views of the NSF, CPRE, or its institutional members. 1 PrefaceThe hypothetical learning progressions presented here are the products of the deliberations of two working groups of science education researchers, each group also including a state science curriculum supervisor, organized by the Consortium for Policy Research in Education (CPRE), with support from the National Science Foundation. Their charge was to produce hypothetical learning progressions describing the pathways students might be expected to follow as they acquire deep understanding of two of the core learning goals set by the National Research Council's (NRC) Committee on a Conceptual Framework for the New K-12 Science Education Standards. The goals in question address students' understanding of the structure, properties, and transformations of matter in the physical sciences and of the flow of matter and energy in ecosystems in the life sciences. These two core goals were chosen because a good bit of research has been done on children's learning in these areas, some of it carried out by members of our working groups. These hypothetical learning progressions are intended to inform those who are working on the new national science ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.