Background Exercise capacity as measured by peak oxygen uptake (Vo2) is similarly impaired in patients with heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF). However, characterization of how each component of Vo2 changes in response to incremental exercise in HFpEF versus HFrEF has not been previously defined. We hypothesized that abnormally low peripheral o2 extraction (arterio-mixed venous o2 content difference, [C(a-v)o2]) during exercise significantly contributes to impaired exercise capacity in HFpEF. Methods and Results We performed maximum incremental cardiopulmonary exercise testing with invasive hemodynamic monitoring on 104 patients with symptomatic NYHA II to IV heart failure (HFpEF, n=48, peak Vo2=13.9±0.5 mL kg−1 min−1, mean±SEM, and HFrEF, n=56, peak Vo2=12.1±0.5 mL kg−1 min−1) and 24 control subjects (peak Vo2 27.0±1.7 mL kg−1 min−1). Peak exercise C(a-v)o2 was lower in HFpEF compared with HFrEF (11.5±0.27 versus 13.5±0.34 mL/dL, respectively, P<0.0001), despite no differences in age, hemoglobin level, peak respiratory exchange ratio, Cao2, or cardiac filling pressures. Peak C(a-v)o2 and peak heart rate emerged as the leading predictors of peak Vo2 in HFpEF. Impaired peripheral o2 extraction was the predominant limiting factor to exercise capacity in 40% of patients with HFpEF and was closely related to elevated systemic blood pressure during exercise (r=0.49, P=0.0005). Conclusions In the first study to directly measure C(a-v)o2 throughout exercise in HFpEF, HFrEF, and normals, we found that peak C(a-v)o2 was a major determinant of exercise capacity in HFpEF. The important functional limitation imposed by impaired o2 extraction may reflect intrinsic abnormalities in skeletal muscle or peripheral microvascular function, and represents a potential target for therapeutic intervention.
Elevated PCWP/CO slope during exercise (>2 mm Hg/L/min) is common in DOE-nlrW and predicts exercise capacity and heart failure outcomes. These findings suggest that current definitions of HFpEF based on single measures during rest are insufficient and that assessment of exercise PCWP/CO slope may refine early HFpEF diagnosis.
The RhoA (Rho) GTPase is a master regulator of dendrite morphogenesis. Rho activation in developing neurons slows dendrite branch dynamics, yielding smaller, less branched dendrite arbors. Constitutive activation of Rho in mature neurons causes dendritic spine loss and dendritic regression, indicating that Rho can affect dendritic structure and function even after dendrites have developed. However, it is unclear whether and how endogenous Rho modulates dendrite and synapse morphology after dendrite arbor development has occurred. We demonstrate that a Rho inhibitory pathway involving the Arg tyrosine kinase and p190RhoGAP is essential for synapse and dendrite stability during late postnatal development. Hippocampal CA1 pyramidal dendrites develop normally in arg Ϫ/Ϫ mice, reaching their mature size by postnatal day 21 (P21). However, dendritic spines do not undergo the normal morphological maturation in these mice, leading to a loss of hippocampal synapses and dendritic branches by P42. Coincident with this synapse and dendrite loss, arg Ϫ/Ϫ mice exhibit progressive deficits in a hippocampus-dependent object recognition behavioral task. p190RhoGAP localizes to dendritic spines, and its activity is reduced in arg Ϫ/Ϫ hippocampus, leading to increased Rho activity. Although mutations in p190rhogap enhance dendritic regression resulting from decreased Arg levels, reducing gene dosage of the Rho effector ROCKII can suppress the dendritic regression observed in arg Ϫ/Ϫ mice. Together, these data indicate that signaling through Arg and p190RhoGAP acts late during synaptic refinement to promote dendritic spine maturation and synapse/dendrite stability by attenuating synaptic Rho activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.