Microorganisms can be engineered to produce useful products, including chemicals and fuels from sugars derived from renewable feedstocks, such as plant biomass. An alternative method is to use low potential reducing power from nonbiomass sources, such as hydrogen gas or electricity, to reduce carbon dioxide directly into products. This approach circumvents the overall low efficiency of photosynthesis and the production of sugar intermediates. Although significant advances have been made in manipulating microorganisms to produce useful products from organic substrates, engineering them to use carbon dioxide and hydrogen gas has not been reported. Herein, we describe a unique temperature-dependent approach that confers on a microorganism (the archaeon
Pyrococcus furiosus,
which grows optimally on carbohydrates at 100°C) the capacity to use carbon dioxide, a reaction that it does not accomplish naturally. This was achieved by the heterologous expression of five genes of the carbon fixation cycle of the archaeon
Metallosphaera sedula,
which grows autotrophically at 73°C. The engineered
P. furiosus
strain is able to use hydrogen gas and incorporate carbon dioxide into 3-hydroxypropionic acid, one of the top 12 industrial chemical building blocks. The reaction can be accomplished by cell-free extracts and by whole cells of the recombinant
P. furiosus
strain. Moreover, it is carried out some 30°C below the optimal growth temperature of the organism in conditions that support only minimal growth but maintain sufficient metabolic activity to sustain the production of 3-hydroxypropionate. The approach described here can be expanded to produce important organic chemicals, all through biological activation of carbon dioxide.
Background: Thermoacidophilic Sulfolobales contain a novel CO 2 fixation pathway; all enzymes but one have been accounted for in Metallosphaera sedula. Results: Enzymes encoded in Msed_0394 and Msed_0406 each exhibit 4-hydroxybutyrate-CoA synthetase activity, consistent with transcriptomic evidence. Conclusion: Msed_0406 is likely the physiologically relevant enzyme in the cycle. Significance: All enzymes are now accounted for in the CO 2 fixation cycle of M. sedula.
ABSTRACTCrenarchaeotal genomes encode the 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle for carbon dioxide fixation. Of the 13 enzymes putatively comprising the cycle, several of them, including methylmalonyl-coenzyme A (CoA) epimerase (MCE) and methylmalonyl-CoA mutase (MCM), which convert (S)-methylmalonyl-CoA to succinyl-CoA, have not been confirmed and characterized biochemically. In the genome ofMetallosphaera sedula(optimal temperature [Topt], 73°C), the gene encoding MCE (Msed_0639) is adjacent to that encoding the catalytic subunit of MCM-α (Msed_0638), while the gene for the coenzyme B12-binding subunit of MCM (MCM-β) is located remotely (Msed_2055). The expression of all three genes was significantly upregulated under autotrophic compared to heterotrophic growth conditions, implying a role in CO2fixation. Recombinant forms of MCE and MCM were produced inEscherichia coli; soluble, active MCM was produced only if MCM-α and MCM-β were coexpressed. MCE is a homodimer and MCM is a heterotetramer (α2β2) with specific activities of 218 and 2.2 μmol/min/mg, respectively, at 75°C. The heterotetrameric MCM differs from the homo- or heterodimeric orthologs in other organisms. MCE was activated by divalent cations (Ni2+, Co2+, and Mg2+), and the predicted metal binding/active sites were identified through sequence alignments with less-thermophilic MCEs. The conserved coenzyme B12-binding motif (DXHXXG-SXL-GG) was identified inM. sedulaMCM-β. The two enzymes together catalyzed the two-step conversion of (S)-methylmalonyl-CoA to succinyl-CoA, consistent with their proposed role in the 3-HP/4-HB cycle. Based on the highly conserved occurrence of single copies of MCE and MCM inSulfolobaceaegenomes, theM. sedulaenzymes are likely to be representatives of these enzymes in the 3-HP/4-HB cycle in crenarchaeal thermoacidophiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.