Phospholipase A 2 enzymes are ubiquitously distributed throughout the prokaryotic and eukaryotic kingdoms and are utilized in a wide array of cellular processes and physiological and immunological responses. Several patatin-like phospholipase homologs of ExoU from Pseudomonas aeruginosa were selected on the premise that ubiquitin activation of this class of bacterial enzymes was a conserved process. We found that ubiquitin activated all phospholipases tested in both in vitro and in vivo assays via a conserved serine-aspartate catalytic dyad. Ubiquitin chains versus monomeric ubiquitin were superior in inducing catalysis, and ubiquitin-like proteins failed to activate phospholipase activity. Toxicity studies in a prokaryotic dual-expression system grouped the enzymes into high-and low-toxicity classes. Toxicity measured in eukaryotic cells also suggested a two-tiered classification but was not predictive of the severity of cellular damage, suggesting that each enzyme may correspond to unique properties perhaps based on its specific biological function. Additional studies on lipid binding preference suggest that some enzymes in this family may be differentially sensitive to phosphatidyl-4,5-bisphosphate in terms of catalytic activation enhancement and binding affinity. Further analysis of the function and amino acid sequences of this enzyme family may lead to a useful approach to formulating a unifying model of how these phospholipases behave after delivery into the cytoplasmic compartment.
Achromobacter xylosoxidans is increasingly recognized as a colonizer of cystic fibrosis (CF) patients, but the role that A. xylosoxidans plays in pathology remains unknown. This knowledge gap is largely due to the lack of model systems available to study the toxic potential of this bacterium. Recently, a phospholipase A2 (PLA2) encoded by a majority of A. xylosoxidans genomes, termed AxoU, was identified. Here, we show that AxoU is a type III secretion system (T3SS) substrate that induces cytotoxicity to mammalian cells. A tissue culture model was developed showing that a subset of A. xylosoxidans isolates from CF patients induce cytotoxicity in macrophages, suggestive of a pathogenic or inflammatory role in the CF lung. In a toxic strain, cytotoxicity is correlated with transcriptional activation of axoU and T3SS genes, demonstrating that this model can be used as a tool to identify and track expression of virulence determinants produced by this poorly understood bacterium.
U21 is a viral protein that forms hetero-oligomers with class I major histocompatibility complex molecules and reroutes them to lysosomes. It is shown that U21 exits from the Golgi in a distinct clathrin-independent carrier that also carries unfolded and aggregated proteins to lysosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.