Research pertaining to conductive polymers has gained significant traction in recent years, and their applications range from optoelectronics to material science. For all intents and purposes, conductive polymers can be described as Nobel Prize-winning materials, given that their discoverers were awarded the Nobel Prize in Chemistry in 2000. In this review, we seek to describe the chemical forms and functionalities of the main types of conductive polymers, as well as their synthesis methods. We also present an in-depth analysis of composite conductive polymers that contain various nanomaterials such as graphene, fullerene, carbon nanotubes, and paramagnetic metal ions. Natural polymers such as collagen, chitosan, fibroin, and hydrogel that are structurally modified for them to be conductive are also briefly touched upon. Finally, we expound on the plethora of biomedical applications that harbor the potential to be revolutionized by conductive polymers, with a particular focus on tissue engineering, regenerative medicine, and biosensors.
We present a combined experimental and computational study that probes the thermoelectric and electrical transport properties of molecular junctions. Experiments were performed on junctions created by trapping aromatic molecules between gold electrodes. The end groups (-SH, -NC) of the aromatic molecules were systematically varied to study the effect of contact coupling strength and contact chemistry. When the coupling of the molecule with one of the electrodes was reduced by switching the terminal chemistry from -SH to -H, the electrical conductance of molecular junctions decreased by an order of magnitude, whereas the thermopower varied by only a few percent. This has been predicted computationally in the past and is experimentally demonstrated for the first time. Further, our experiments and computational modeling indicate the prospect of tuning thermoelectric properties at the molecular scale. In particular, the thiol-terminated aromatic molecular junctions revealed a positive thermopower that increased linearly with length. This positive thermopower is associated with charge transport primarily through the highest occupied molecular orbital, as shown by our computational results. In contrast, a negative thermopower was observed for a corresponding molecular junction terminated by an isocyanide group due to charge transport primarily through the lowest unoccupied molecular orbital.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.