We consider the task of unsupervised extraction of meaningful latent representations of speech by applying autoencoding neural networks to speech waveforms. The goal is to learn a representation able to capture high level semantic content from the signal, e.g. phoneme identities, while being invariant to confounding low level details in the signal such as the underlying pitch contour or background noise. Since the learned representation is tuned to contain only phonetic content, we resort to using a high capacity WaveNet decoder to infer information discarded by the encoder from previous samples. Moreover, the behavior of autoencoder models depends on the kind of constraint that is applied to the latent representation. We compare three variants: a simple dimensionality reduction bottleneck, a Gaussian Variational Autoencoder (VAE), and a discrete Vector Quantized VAE (VQ-VAE). We analyze the quality of learned representations in terms of speaker independence, the ability to predict phonetic content, and the ability to accurately reconstruct individual spectrogram frames. Moreover, for discrete encodings extracted using the VQ-VAE, we measure the ease of mapping them to phonemes. We introduce a regularization scheme that forces the representations to focus on the phonetic content of the utterance and report performance comparable with the top entries in the ZeroSpeech 2017 unsupervised acoustic unit discovery task.Index Terms-autoencoder, speech representation learning, unsupervised learning, acoustic unit discovery J. Chorowski is with the
Recent studies have demonstrated the power of recurrent neural networks for machine translation, image captioning and speech recognition. For the task of capturing temporal structure in video, however, there still remain numerous open research questions. Current research suggests using a simple temporal feature pooling strategy to take into account the temporal aspect of video. We demonstrate that this method is not sufficient for gesture recognition, where temporal information is more discriminative compared to general video classification tasks. We explore deep architectures for gesture recognition in video and propose a new end-to-end trainable neural network architecture incorporating temporal convolutions and bidirectional recurrence. Our main contributions are twofold; first, we show that recurrence is crucial for this task; second, we show that adding temporal convolutions leads to significant improvements. We evaluate the different approaches on the Montalbano gesture recognition dataset, where we achieve state-of-the-art results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.