We introduce a new approach for finding high accuracy, free and closed-form expressions for the gravitational waves emitted by binary black hole collisions from ab initio models. More precisely, our expressions are built from numerical surrogate models based on supercomputer simulations of the Einstein equations, which have been shown to be essentially indistinguishable from each other. Distinct aspects of our approach are that: (i) representations of the gravitational waves can be explicitly written in a few lines, (ii) these representations are free-form yet still fast to search for and validate and (iii) there are no underlying physical approximations in the underlying model. The key strategy is combining techniques from Artificial Intelligence and Reduced Order Modeling for parameterized systems. Namely, symbolic regression through genetic programming combined with sparse representations in parameter space and the time domain using Reduced Basis and the Empirical Interpolation Method enabling fast free-form symbolic searches and large-scale a posteriori validations. As a proof of concept we present our results for the collision of two black holes, initially without spin, and with an initial separation corresponding to 25–31 gravitational wave cycles before merger. The minimum overlap, compared to ground truth solutions, is 99%. That is, 1% difference between our closed-form expressions and supercomputer simulations; this is considered for gravitational (GW) science more than the minimum required due to experimental numerical errors which otherwise dominate. This paper aims to contribute to the field of GWs in particular and Artificial Intelligence in general.
We present an introduction to some of the state of the art in reduced order and surrogate modeling in gravitational-wave (GW) science. Approaches that we cover include principal component analysis, proper orthogonal (singular value) decompositions, the reduced basis approach, the empirical interpolation method, reduced order quadratures, and compressed likelihood evaluations. We divide the review into three parts: representation/compression of known data, predictive models, and data analysis. The targeted audience is practitioners in GW science, a field in which building predictive models and data analysis tools that are both accurate and fast to evaluate, especially when dealing with large amounts of data and intensive computations, are necessary yet can be challenging. As such, practical presentations and, sometimes, heuristic approaches are here preferred over rigor when the latter is not available. This review aims to be self-contained, within reasonable page limits, with little previous knowledge (at the undergraduate level) requirements in mathematics, scientific computing, and related disciplines. Emphasis is placed on optimality, as well as the curse of dimensionality and approaches that might have the promise of beating it. We also review most of the state of the art of GW surrogates. Some numerical algorithms, conditioning details, scalability, parallelization and other practical points are discussed. The approaches presented are to a large extent non-intrusive (in the sense that no differential equations are invoked) and data-driven and can therefore be applicable to other disciplines. We close with open challenges in high dimension surrogates, which are not unique to GW science.
The combination of the reduced basis and the empirical interpolation method (EIM) approaches have produced outstanding results in many disciplines. In particular, in gravitational wave (GW) science these results range from building non-intrusive surrogate models for GWs to fast parameter estimation adding the use of reduced order quadratures. These surrogates have the salient feature of being essentially indistinguishable from or very close to supercomputer simulations of the Einstein equations, but can be evaluated in the order of a millisecond per multipole mode on a standard laptop. In this article we clarify a common misperception of the EIM as originally introduced and used in practice in GW science. Namely, we prove that the EIM at each iteration chooses the interpolation nodes so as to make the related Vandermonde-type matrix as invertible as possible; not necessarily optimizing its conditioning or accuracy of the interpolant as is sometimes thought. In fact, we introduce two new variations of the EIM, nested as well, which do optimize with respect to conditioning and the Lebesgue constant, respectively, and compare them through numerical experiments with the original EIM using GWs. Our analyses and numerical results suggest a subtle relationship between solving for the original EIM, conditioning, and the Lebesgue constant, in consonance with active research in rigorous approximation theory and related fields.
We analyze a prospect for predicting gravitational waveforms from compact binaries based on automated machine learning (AutoML) from around a hundred different possible regression models, without having to resort to tedious and manual case-by-case analyses and fine-tuning. The particular study of this article is within the context of the gravitational waves emitted by the collision of two spinless black holes in initial quasi-circular orbit. We find, for example, that approaches such as Gaussian process regression with radial bases as kernels, an approach which is generalizable to multiple dimensions with low computational evaluation cost, do provide a sufficiently accurate solution. The results here presented suggest that AutoML might provide a framework for regression in the field of surrogates for gravitational waveforms. Our study is within the context of surrogates of numerical relativity simulations based on Reduced Basis and the Empirical Interpolation Method, where we find that for the particular case analyzed AutoML can produce surrogates which are essentially indistinguishable from the NR simulations themselves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.