We measured the photothermal lens signal in samples exhibiting high turbidity using a pump-probe scheme. We show that the photothermal lens signal properties remain nearly unchanged up to values of turbidity of 6 cm(-1) despite the signal reduction due to the decrease of excitation power associated to turbidity losses. The signal starts decreasing abruptly for values of turbidity larger than 6 cm(-1). Multiple light scattering yields a reduction of the temperature gradients, which results in a decrease of the effective signal. However, the signal-to-noise ratio remains above 50 for turbidity values of 9 cm(-1), which corresponds to a reduction of light transmission by more than four orders of magnitude. We report on the detection of the photothermal lens signal through a 2 mm layer of organic tissue with a signal-to-noise ratio of about 500. This technique appears promising for imaging applications in organic samples, which usually exhibit high turbidity for visible and near-infrared light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.