Structural, interfacial, optical, and transport properties of large-area MoS2 ultra-thin films on BNbuffered silicon substrates fabricated using magnetron sputtering are investigated. A relatively simple growth strategy is demonstrated here that simultaneously promotes superior interfacial and bulk MoS2 properties. Few layers of MoS2 are established using X-ray reflectivity, diffraction, ellipsometry, and Raman spectroscopy measurements. Layer-specific modeling of optical constants shows very good agreement with first-principles calculations. Conductivity measurements reveal that few-layer MoS2 films are more conducting than many-layer films.Photo-conductivity measurements reveal that the sputter deposited MoS2 films compare favorably with other large-area methods. Our work illustrates that sputtering is a viable route for large-area device applications using transition metal dichalcogenides.
Optical band gap properties of high-quality few-layer topological insulator Bi2Se3 thin films grown with magnetron sputtering are investigated using broadband absorption spectroscopy.We provide direct optical evidence of a rigid blue-shift to up to 0.5 eV in the band gap of Bi2Se3 as it approaches the two-dimensional limit. The onset of this behavior is most significant below six quintuple layers. The blue shift is very robust and is observed in both protected (capped) and exposed (uncapped) thin films. Our results are consistent with observations that finite-size effects have profound impact on the electronic character of topological insulators, particularly when the top and bottom surface states are coupled. Our result provides new insights, and the need for deeper investigations, into the scaling behavior of topological materials before they can have significant impact on electronic applications.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.