Purpose/objectives: This work seeks to evaluate the plan quality, treatment delivery efficiency, and accuracy of single-isocenter volumetric modulated arc therapy (VMAT) of abdominal/pelvic oligometastatic lymph nodes (LNs) stereotactic body radiation therapy (SBRT) on Halcyon Linac.Materials and Methods: After completing the in-house multitarget end-to-end phantom testing and independent dose verification using MD Anderson's singleisocenter/multi-target (lung and spine target inserts) thorax phantom, eight patients with two to three abdominal/pelvic oligometastatic LNs underwent highly conformal single-isocenter VMAT-SBRT treatment using the Halcyon Linac 6MV flattening filter free (FFF) beam. Targets were identified using an Axumin PET/CT scan coregistered with planning CT images and a single-isocenter was placed between/ among the targets. Doses between 25 and 36.25 Gy in 5 fractions were delivered.Patients were treated every other day. Plans were calculated in Eclipse with advanced AcurosXB algorithm for heterogeneity corrections. For comparison, Halcyon VMAT-SBRT plans were retrospectively generated for SBRT-dedicated True-Beam with a 6MV-FFF beam using identical planning geometry and objectives.Target coverage, conformity index (CI), dose to 2 cm away from each target (D2cm) and dose to adjacent organs-at-risk (OAR) were evaluated. Additionally, various treatment delivery parameters including beam-on time were recorded.Results: Phantom measurements showed acceptable spatial accuracy of conebeam CT-guided Halcyon SBRT treatments including compliance with MD Anderson's single-isocenter/multi-targets phantom credentialing results. For patients, the mean isocenter to tumor center distance was 3.4 ± 1.2 cm (range, 1.5-4.8 cm). The mean combined PTV was 18.9 ± 10.9 cc (range, 5.6-39.5 cc). There was no clinically significant difference in dose to LNs, CI, D2cm and maximal doses to OAR between single-isocenter Halcyon and Truebeam VMAT-SBRT plans, although, Halcyon plans provided preferably lower maximal dose to adjacent OAR. Additionally, total monitor units, beam-on time and overall treatment time was lower with Halcyon plans. Halcyon's portal dosimetry demonstrated a high pass rate of 98.1 ± 1.6% for clinical gamma passing criteria of 2%/2 mm.
To demonstrate the plan quality and delivery efficiency of volumetricmodulated arc therapy (VMAT) with the Halcyon Linac ring delivery system (RDS) in the treatment of single-isocenter/two-lesion lung stereotactic body radiation therapy (SBRT). Materials/methods: Sixteen previously treated non-coplanar VMAT singleisocenter/two-lesion lung SBRT plans delivered with SBRT-dedicated C-arm TrueBeam Linac were selected. Prescribed dose was 50 Gy to each lesion over five fractions with treatment delivery every other day and AcurosXB algorithm as the final dose calculation algorithm.TrueBeam single-isocenter plans were reoptimized for Halcyon Linac with coplanar geometry. Both TrueBeam and Halcyon plans were normalized for identical combined target coverage and evaluated. Conformity indices (CIs), heterogeneity index (HI), gradient index (GI), gradient distance (GD), and D 2cm were compared. The normal lung V5Gy, V10Gy, V20Gy, mean lung dose (MLD), and dose to organs at risk (OAR) were evaluated. Treatment delivery parameters, including beam-on time, were recorded. Results: Halcyon plans were statistically similar to clinically delivered True-Beam plans. No statistical differences in target conformity, dose heterogeneity, or intermediate-dose spillage were observed (all, p > 0.05). Halcyon plans, on average,demonstrated statistically insignificant reduced maximum dose to most adjacent OAR and normal lung. However, Halcyon yielded statistically significant lower maximal dose to the ribs (p = 0.041) and heart (p = 0.026), dose to 1 cc of ribs (p = 0.035) and dose to 5 cc of esophagus (p = 0.043). Plan complexity slightly increased as seen in the average increase of total monitor units, modulation factor, and beam-on time by 480, 0.48, and 2.78 min, respectively. However, the estimated overall treatment time was reduced by 2.22 min,on average.Mean dose delivery accuracy of clinical TrueBeam plans and the corresponding Halcyon plans was 98.9 ± 0.85% (range: 98.1%-100%) and 98.45 ± 0.99% (range: 97.9%-100%), respectively, demonstrating similar treatment delivery accuracy. Conclusion: SBRT treatment of synchronous lung lesions via single-isocenter VMAT on Halcyon RDS is feasible and dosimetrically equivalent to clinically delivered TrueBeam plans. Halcyon provides excellent plan quality and shorter overall treatment time that may improve patient compliance, reduce intrafraction movement, improve clinic efficiency, and potentially offering lung SBRT treatments for underserved patients on a Halcyon only clinic.
Purpose To demonstrate fast treatment planning feasibility of stereotactic body radiation therapy (SBRT) for centrally located lung tumors on Halcyon Linac via a previously validated knowledge‐based planning (KBP) model to support offline adaptive radiotherapy. Materials/methods Twenty previously treated non‐coplanar volumetric‐modulated arc therapy (VMAT) lung SBRT plans (c‐Truebeam) on SBRT‐dedicated C‐arm Truebeam Linac were selected. Patients received 50 Gy in five fractions. c‐Truebeam plans were re‐optimized for Halcyon manually (m‐Halcyon) and with KBP model (k‐Halcyon). Both m‐Halcyon and k‐Halcyon plans were normalized for identical or better target coverage than clinical c‐Truebeam plans and compared for target conformity, dose heterogeneity, dose fall‐off, and dose tolerances to the organs‐at‐risk (OAR). Treatment delivery parameters and planning times were evaluated. Results k‐Halcyon plans were dosimetrically similar or better than m‐Halcyon and c‐Truebeam plans. k‐Halcyon and m‐Halcyon plan comparisons are presented with respect to c‐Truebeam. Differences in conformity index were statistically insignificant in k‐Halcyon and on average 0.02 higher (p = 0.04) in m‐Halcyon plans. Gradient index was on average 0.43 (p = 0.006) lower and 0.27 (p = 0.02) higher for k‐Halcyon and m‐Halcyon, respectively. Maximal dose 2 cm away in any direction from target was statistically insignificant. k‐Halcyon increased maximal target dose on average by 2.9 Gy (p < 0.001). Mean lung dose was on average reduced by 0.10 Gy (p = 0.004) in k‐Halcyon and increased by 0.14 Gy (p < 0.001) in m‐Halcyon plans. k‐Halcyon plans lowered bronchial tree dose on average by 1.2 Gy. Beam‐on‐time (BOT) was increased by 2.85 and 1.67 min, on average for k‐Halcyon and m‐Halcyon, respectively. k‐Halcyon plans were generated in under 30 min compared to estimated dedicated 180 ± 30 min for m‐Halcyon or c‐Truebeam plan. Conclusion k‐Halcyon plans were generated in under 30 min with excellent plan quality. This adaptable KBP model supports high‐volume clinics in the expansion or transfer of lung SBRT patients to Halcyon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.