We aimed to determine the effects of deep learning-based reconstruction (DLR) on radiomic features obtained from cardiac computed tomography (CT) by comparing with iterative reconstruction (IR), and filtered back projection (FBP). A total of 284 consecutive patients with 285 cardiac CT scans that were reconstructed with DLR, IR, and FBP, were retrospectively enrolled. Radiomic features were extracted from the left ventricular (LV) myocardium, and from the periprosthetic mass if patients had cardiac valve replacement. Radiomic features of LV myocardium from each reconstruction were compared using a fitting linear mixed model. Radiomics models were developed to diagnose periprosthetic abnormality, and the performance was evaluated using the area under the receiver characteristics curve (AUC). Most radiomic features of LV myocardium (73 of 88) were significantly different in pairwise comparisons between all three reconstruction methods (P < 0.05). The radiomics model on IR exhibited the best diagnostic performance (AUC 0.948, 95% CI 0.880–1), relative to DLR (AUC 0.873, 95% CI 0.735–1) and FBP (AUC 0.875, 95% CI 0.731–1), but these differences did not reach significance (P > 0.05). In conclusion, applying DLR to cardiac CT scans yields radiomic features distinct from those obtained with IR and FBP, implying that feature robustness is not guaranteed when applying DLR.
Artificial bone substitutes have been developed using various biomaterials for use in medicine. Silk fibroin (SF) displays excellent mechanical properties and cell compatibility. Nonetheless, the mechanical properties of silk fibroin scaffolds used in artificial bone substitutes are weaker than those of natural bone, and silk fibroin is deficient as an osteogenic agent. This limits their effectiveness in bone tissue engineering. We added nano-hydroxyapatite (nHAp) particles to an existing cell-based artificial bone substitute with a silk fibroin scaffold, which will improve its mechanical properties and osteogenic efficacy, leading to significant bone regeneration. The mechanical characters of silk fibroin modifying with nHAp were measured by Atomic Force Microscopy Analysis, dispersive X-ray spectroscopy, Porosity measurement, and Microcomputed Tomography. The proliferation and toxicity of a fibroin/dextran/collagen sponge (FDS) containing nHAp were evaluated in vitro, and its osteogenic efficacy was evaluated using nude mouse and rabbit radius defect models. The defect area was repaired and showed callus formation of new bone in the rabbit radius defect models of the nHAp-FDS-treated group, whereas the defect area was unchanged in the FDS-treated group. The nHAp-FDS manufactured in this study showed significant bone regeneration owing to the synergistic effects of the components, such as those due to the broad range of pore sizes in the sponge and protein adsorbability of the nHAp, which could be suggested as a better supportive material for bone tissue engineering.
Wound closure is a critical step in postoperative wound recovery. Substantial advancements have been made in many different means of facilitating wound closure, including the use of tissue adhesives. Compared to conventional methods, such as suturing, tissue bioadhesives better accelerate wound closure. However, several existing tissue adhesives suffer from cytotoxicity, inadequate tissue adhesive strength, and high costs. In this study, a series of bioadhesives was produced using non-swellable spider silk-derived silk fibroin protein and an outer layer of swellable polyethylene glycol and tannic acid. The gelation time of the spider silk-derived silk fibroin protein bioadhesive is less than three minutes and thus can be used during rapid surgical wound closure. By adding polyethylene glycol (PEG) 2000 and tannic acid as co-crosslinking agents to the N-Hydroxysuccinimide (NHS), and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) reaction, the adhesive strength of the bioadhesive became 2.5 times greater than that of conventional fibrin glue adhesives. Silk fibroin bioadhesives do not show significant cytotoxicity in vitro compared with other bioadhesives. In conclusion, silk fibroin bioadhesive is promising as a new medical tool for more effective and efficient surgical wound closure, particularly in bone fractures.
This study aimed to investigate the characteristics of composite scaffolds in combination of fibroin and carboxymethyl cellulose (CMC) in bone tissue engineering. Fibroin is a useful biomaterial and is a major component of silk yarns composed of fibrous proteins. Improving for binding efficiency in bone formation after implanted scaffold, CMC was added to fibroin. CMC could improve injectable characters in bone substitutes by adding in scaffold material, fibroin. The porous shapes, porosity, surface wettability, water absorption, and thermal properties of the CMC added fibroin scaffold were better than fibroin only scaffold. For tissue engineering of bone marrow mesenchymal stem cells (BMSCs), BMSCs isolated from mice were seeded onto the scaffold, and the cell proliferation rate was measured. alkaline phosphatase activity in BMSCs was higher in the scaffold containing CMC than that in the scaffold containing fibroin alone. The expression levels of osteocyte marker genes and proteins were increased in the CMC scaffold. The biocompatibility and hydrophilicity of CMC scaffolds play important roles in the growth and proliferation of osteocytes. Furthermore, the CMC scaffold design proposed in this study could play an important role in facilitating cartilage, ossification, and nerve differentiation of BMSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.