Worldwide efforts to eradicate polio caused a tipping point in polio vaccination strategies. A switch from the oral polio vaccine, which can cause circulating and virulent vaccine derived polioviruses, to inactivated polio vaccines (IPV) is scheduled. Moreover, a manufacturing process, using attenuated virus strains instead of wild-type polioviruses, is demanded to enhance worldwide production of IPV, especially in low- and middle income countries. Therefore, development of an IPV from attenuated (Sabin) poliovirus strains (sIPV) was pursued. Starting from the current IPV production process based on wild type Salk strains, adaptations, such as lower virus cultivation temperature, were implemented. sIPV was produced at industrial scale followed by formulation of both plain and aluminium adjuvanted sIPV. The final products met the quality criteria, were immunogenic in rats, showed no toxicity in rabbits and could be released for testing in the clinic. Concluding, sIPV was developed to manufacturing scale. The technology can be transferred worldwide to support post polio-eradication biosafety goals.
The anticipated increase in the demand for inactivated polio vaccines resulting from the success in the polio eradication program requires an increase in production capacity and cost price reduction of the current inactivated polio vaccine production processes. Improvement of existing production processes is necessary as the initial process development has been done decades ago. An up-to-date lab-scale version encompassing the legacy inactivated polio vaccine production process was set-up. This lab-scale version should be representative of the large scale, meaning a scale-down model, to allow experiments for process optimization that can be readily applied. Initially the separate unit operations were scaled-down at setpoint. Subsequently, the unit operations were applied successively in a comparative manner to large-scale manufacturing. This allows the assessment of the effects of changes in one unit operation to the consecutive units at small-scale. Challenges in translating large-scale operations to lab-scale are discussed, and the concessions that needed to be made are described. The current scale-down model for cell and virus culture (2.3-L) presents a feasible model with its production scale counterpart (750-L) when operated at setpoint. Also, the current scale-down models for the DSP unit operations clarification, concentration, size exclusion chromatography, ion exchange chromatography, and inactivation are in agreement with the manufacturing scale. The small-scale units can be used separately, as well as sequentially, to study variations and critical product quality attributes in the production process. Finally, it is shown that the scale-down unit operations can be used consecutively to prepare trivalent vaccine at lab-scale with comparable characteristics to the product produced at manufacturing scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.