SummaryInterspecies signalling between Porphyromonas gingivalis and Streptococcus gordonii serves to constrain development of dual species communities. Contact with S. gordonii propagates a tyrosine phosphorylation-dependent signal within P. gingivalis that culminates in reduced transcription of adhesin and signalling genes. Here we demonstrate the involvement of the P. gingivalis orphan LuxR family transcription factor PGN_1373, which we designate CdhR, in this control pathway. Expression of cdhR is elevated following contact with S. gordonii; however, regulation of cdhR did not occur in a mutant lacking the tyrosine phosphatase Ltp1, indicating that CdhR and Ltp1 are components of the same regulon. Contact between S. gordonii and a CdhR mutant resulted in increased transcription of mfa, encoding the subunit of the short fimbriae, along with higher levels of Mfa protein. Expression of luxS, encoding AI-2 synthase, was also increased in the cdhR mutant after contact with S. gordonii. The Mfa adhesive function and AI-2-dependent signalling participate in the formation and development of dual species communities, and consistent with this the cdhR mutant displayed elevated accumulation on a substratum of S. gordonii. Recombinant CdhR protein bound to upstream regulatory regions of both mfa and luxS, indicating that CdhR has a direct effect on gene expression. LuxS was also found to participate in a positive feedback loop that suppresses CdhR expression. Interaction of Mfa fimbriae with S. gordonii is necessary to initiate signalling through CdhR. These results reveal CdhR to be an effector molecule in a negative regulatory network that controls P. gingivalis-S. gordonii heterotypic communities.
After traumatic brain injury (TBI), glial fibrillary acidic protein (GFAP) and other brain-derived proteins and their breakdown products are released into biofluids such as CSF and blood. Recently, a sandwich ELISA was constructed that measured GFAP concentrations in CSF or serum from human mild-moderate TBI patients. The goals of the present study were to characterize the same two antibodies used in this ELISA, and to determine which GFAP bands are detected by this antibody combination. Here, both antibodies recognized GFAP specifically in human brain and post-TBI CSF in a cluster of bands ranging from 50–38 kDa, that resembled bands from calpain-cleaved GFAP. By immunoprecipitation, the anti-GFAP Capture antibody recovered full length GFAP and its breakdown products from human brain lysate and post-TBI CSF. These findings demonstrate that the anti-GFAP ELISA antibodies non-preferentially detect intact GFAP and GFAP breakdown products, underscoring their utility for detecting brain injury in human patients.
Background: Decreased CaMKII activity after ischemia is correlated with the extent of neuronal damage. Results: CaMKII inhibition within cortical astrocytes decreases glutamate uptake and leads to neurotoxic ATP release. Conclusion: Astrocytic CaMKII inactivation leads to cellular dysfunction and compromised neuronal survival. Significance: Pathophysiological inactivation of CaMKII contributes to ischemic damage via disrupting astrocyte-neuron communication.
Elevated N-methyl-D-aspartate receptor (NMDAR) activity is linked to central sensitization and chronic pain. However, NMDAR antagonists display limited therapeutic potential because of their adverse side effects. Novel approaches targeting the NR2B-PSD95-nNOS complex to disrupt signaling pathways downstream of NMDARs show efficacy in preclinical pain models. Here, we evaluated the involvement of interactions between neuronal nitric oxide synthase (nNOS) and the nitric oxide synthase 1 adaptor protein (NOS1AP) in pronociceptive signaling and neuropathic pain. TAT-GESV, a peptide inhibitor of the nNOS-NOS1AP complex, disrupted the in vitro binding between nNOS and its downstream protein partner NOS1AP but not its upstream protein partner postsynaptic density 95 kDa (PSD95). Putative inactive peptides (TAT-cp4GESV and TAT-GESVΔ1) failed to do so. Only the active peptide protected primary cortical neurons from glutamate/glycine-induced excitotoxicity. TAT-GESV, administered intrathecally (i.t.), suppressed mechanical and cold allodynia induced by either the chemotherapeutic agent paclitaxel or a traumatic nerve injury induced by partial sciatic nerve ligation. TAT-GESV also blocked the paclitaxel-induced phosphorylation at Ser15 of p53, a substrate of p38 MAPK. Finally, TAT-GESV (i.t.) did not induce NMDAR-mediated motor ataxia in the rotarod test and did not alter basal nociceptive thresholds in the radiant heat tail-flick test. These observations support the hypothesis that antiallodynic efficacy of an nNOS-NOS1AP disruptor may result, at least in part, from blockade of p38 MAPK-mediated downstream effects. Our studies demonstrate, for the first time, that disrupting nNOS-NOS1AP protein-protein interactions attenuates mechanistically distinct forms of neuropathic pain without unwanted motor ataxic effects of NMDAR antagonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.