The gut microbiome influences the pathogenesis and course of metabolic disorders such as diabetes. While it is likely that duodenal mucosa associated microbiota contributes to the genesis and progression of increased blood sugar, including the pre-diabetic stage, it is much less studied than stool. We investigated paired stool and duodenal microbiota in subjects with hyperglycemia (HbA1c ≥ 5.7% and fasting plasma glucose > 100 mg/dl) compared to normoglycemic. We found patients with hyperglycemia (n = 33) had higher duodenal bacterial count (p = 0.008), increased pathobionts and reduction in beneficial flora compared to normoglycemic (n = 21). The microenvironment of duodenum was assessed by measuring oxygen saturation using T-Stat, serum inflammatory markers and zonulin for gut permeability. We observed that bacterial overload was correlated with increased serum zonulin (p = 0.061) and higher TNF-α (p = 0.054). Moreover, reduced oxygen saturation (p = 0.021) and a systemic proinflammatory state [increased total leukocyte count (p = 0.031) and reduced IL-10 (p = 0.015)] characterized the duodenum of hyperglycemic. Unlike stool flora, the variability in duodenal bacterial profile was associated with glycemic status and was predicted by bioinformatic analysis to adversely affect nutrient metabolism. Our findings offer new understanding of the compositional changes in the small intestine bacteria by identifying duodenal dysbiosis and altered local metabolism as potentially early events in hyperglycemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.