Conspectus Photoelectrochemical water splitting is a promising avenue for sustainable production of hydrogen used in the chemical industry and hydrogen fuel cells. The basic components of most photoelectrochemical water splitting systems are semiconductor light absorbers coupled to electrocatalysts, which perform the desired chemical reactions. A critical challenge for the design of these systems is the lack of stability for the majority of desired semiconductors under operating water splitting conditions. One strategy to address this issue is to protect the semiconductor by covering it with a stabilizing insulator layer, creating a metal–insulator–semiconductor (MIS) architecture, which has demonstrated improved stability. In addition to enhanced stability, the insulator layer may significantly affect the electron and hole transfer, which governs the recombination rates. Furthermore, the insertion of an insulator layer leads to the introduction of additional insulator/electrocatalyst and insulator/semiconductor interfaces. These interfaces can impact the system’s performance significantly, and they need to be carefully engineered to optimize the efficiencies of MIS systems. In this Account, we describe our recent progress in shedding light on the critical role of the insulator and the interfaces on the performance of MIS systems. We discuss our findings by focusing on the concrete example of planar n-type Si protected by a HfO2 insulator layer and coupled to a Ni or Ir electrocatalyst that performs the oxygen evolution reaction, one of the water splitting half-reactions. To improve our fundamental understanding of the insulator layer, we precisely control the HfO2 insulator thickness using atomic layer deposition (ALD), and we perform a series of rigorous electrochemical experiments coupled with theory and modeling. We demonstrate that by tuning the insulator thickness, we can control the flux and recombination of photogenerated electrons and holes to optimize the generated photovoltage. Despite optimizing the thickness, we find that the maximum generated photovoltage in MIS systems is often significantly lower than the upper performance limit, i.e., there are additional losses in the system that could not be addressed by optimizing the insulator thickness. We identify the sources of these losses and describe strategies to minimize them by a combination of improving the semiconductor light absorption, removing nonidealities associated with interfacial defects, and finding alternative insulators with improved charge carrier selectivity. Finally, we quantify the improvements that can be obtained by implementing these specific strategies. Our collective work outlines strategies to analyze MIS systems, identify the sources of efficiency losses, and optimize the design to approach the fundamental performance limits. These general approaches are broadly applicable to photoelectrochemical materials that utilize sunlight to produce value-added chemicals.
The materials that are receiving the most attention in photoelectrochemical water splitting are metallic nanoparticle electrocatalysts (np‐EC) attached to the surface of a semiconductor (SC) light absorber. In these multicomponent systems, the interface between the semiconductor and electrocatalysts critically affects performance. However, the np‐EC/SC interface remains poorly understood as it is complex on atomic scales, dynamic under reaction conditions, and inaccessible to direct experimental probes. This contribution sheds light on how the electrocatalyst/semiconductor interface evolves under reaction conditions by investigating the behavior of nickel electrocatalysts (as nanoparticles and films) deposited on silicon semiconductors. Rigorous electrochemical experiments, interfacial atomistic characterization, and computational modeling are combined to demonstrate critical links between the atomistic features of the interface and the overall performance. It is shown that electrolyte‐induced atomistic changes to the interface lead to (1) modulation of the charge carrier fluxes and a dramatic decrease in the electron/hole recombination rates and (2) a change in the barrier height of the interface. Furthermore, the critical roles of nonidealities and electrocatalyst coverage due to interfacial geometry are explored. Each of these factors must be considered to optimize the design of metal/semiconductor interfaces which are broadly applicable to photoelectrocatalysis and photovoltaic research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.