Despite of its simplicity, the conventional learning strategy of canonical particle swarm optimization (PSO) is inefficient to handle complex optimization problems due to its tendency of overemphasizing the fitness information of global best position without considering the diversity information of swarm. In this paper, a modified particle swarm optimization with effective guides (MPSOEG) is proposed, aiming to improve the algorithm's search performances in handling the optimization problems with different characteristics. Depending on the search performance of algorithm, two types of exemplars can be generated by an optimal guide creation (OGC) module incorporated into MPSOEG by referring to the particles with valuable directional information. Particularly, a global exemplar is generated by OCG module to guide the swarm converging towards the promising solution regions of search space, whereas a unique local exemplar can be customized for each particle to enable it escaping from local or non-optimal solution regions. In contrary to global best particle, the exemplars generated by OGC module are able to guide all MPSOEG particles more effectively by considering both fitness and diversity information of swarm, hence can achieve better balancing of algorithm's exploration and exploitation searches. Another notable contribution of MPSOEG is the simplicity of its learning framework through the elimination of both inertia weight and acceleration coefficients parameters. Comprehensive simulation studies are conducted with 25 benchmark functions and the proposed MPSOEG is reported to outperform its six peer algorithms in terms of search accuracy, search reliability and search efficiency in most tested problems.
PSO is a simple and yet powerful metaheuristic search algorithm widely used to solve various optimization problems. Nevertheless, conventional PSO tends to lose its population diversity drastically and suffer with compromised performance when encountering the optimization problems with complex fitness landscapes. Extensive studies suggest the needs of preserving high population diversity for PSO to escape from the local optima in order to solve complex optimization problems effectively. Inspired by these ideas, a hovering swarm PSO (HSPSO) is proposed in this paper, where a computationally efficient diversity preservation scheme is first introduced to divide the population of HSPSO into a main swarm and a hovering swarm. An exemplar construction scheme is subsequently proposed in the main swarm of HSPSO to generate a universal exemplar by considering the promising directional information contributed by the other non-fittest particles. The proposed universal exemplar is envisioned to suppress the negative impacts of global best particle, while remain effective to guide all particles of main swarm converging towards the promising solution regions. While hovering around the main swarm, an intelligent scheme is introduced to dynamically adjust inertia weights of all hovering swarm members to achieve proper balancing of exploration and exploitation searches at swarm levels. Extensive performance analyses are conducted by using the proposed HSPSO to solve 30 benchmark functions of CEC 2014 and five real-world engineering applications. Simulation results reveal that the HSPSO is able outperform the state-of-art optimizers when solving most tested functions due to its excellent diversity preservation capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.