In the context of clinical oncology, a fundamental goal of radiomics is the extraction of large amounts of quantitative features whose subsequent analysis can be used for decision support towards personalized and actionable cancer care. Head and neck cancers present a unique set of diagnostic and therapeutic challenges by nature of its complex anatomy and heterogeneity. Radiomics holds the potential to address these barriers, but only if as a collective field we direct future effort towards investigating specific oncologic function and oncologic outcomes, with external validation and collaborative multi-institutional efforts to begin standardizing and refining radiomic signatures. Here we present an overview of radiomic texture analysis methods as well as the software infrastructure, review the developments of radiomics in head and neck cancer applications, discuss unmet challenges, and propose key recommendations for moving the field forward.
Radiomics is one such “big data” approach that applies advanced image refining/data characterization algorithms to generate imaging features that can quantitatively classify tumor phenotypes in a non-invasive manner. We hypothesize that certain textural features of oropharyngeal cancer (OPC) primary tumors will have statistically significant correlations to patient outcomes such as local control. Patients from an IRB-approved database dispositioned to (chemo)radiotherapy for locally advanced OPC were included in this retrospective series. Pretreatment contrast CT scans were extracted and radiomics-based analysis of gross tumor volume of the primary disease (GTVp) were performed using imaging biomarker explorer (IBEX) software that runs in Matlab platform. Data set was randomly divided into a training dataset and test and tuning holdback dataset. Machine learning methods were applied to yield a radiomic signature consisting of features with minimal overlap and maximum prognostic significance. The radiomic signature was adapted to discriminate patients, in concordance with other key clinical prognosticators. 465 patients were available for analysis. A signature composed of 2 radiomic features from pre-therapy imaging was derived, based on the Intensity Direct and Neighbor Intensity Difference methods. Analysis of resultant groupings showed robust discrimination of recurrence probability and Kaplan-Meier-estimated local control rate (LCR) differences between “favorable” and “unfavorable” clusters were noted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.