Global Water Models (GWMs), which include Global Hydrological, Land Surface, and Dynamic Global Vegetation Models, present valuable tools for quantifying climate change impacts on hydrological processes in the data scarce high latitudes. Here we performed a systematic model performance evaluation in six major Pan-Arctic watersheds for different hydrological indicators (monthly and seasonal discharge, extremes, trends (or lack of), and snow water equivalent (SWE)) via a novel Aggregated Performance Index (API) that is based on commonly used statistical evaluation metrics. The machine learning Boruta feature selection algorithm was used to evaluate the explanatory power of the API attributes. Our results show that the majority of the nine GWMs included in the study exhibit considerable difficulties in realistically representing Pan-Arctic hydrological processes. Average APIdischarge (monthly and seasonal discharge) over nine GWMs is > 50% only in the Kolyma basin (55%), as low as 30% in the Yukon basin and averaged over all watersheds APIdischarge is 43%. WATERGAP2 and MATSIRO present the highest (APIdischarge > 55%) while ORCHIDEE and JULES-W1 the lowest (APIdischarge ≤ 25%) performing GWMs over all watersheds. For the high and low flows, average APIextreme is 35% and 26%, respectively, and over six GWMs APISWE is 57%. The Boruta algorithm suggests that using different observation-based climate data sets does not influence the total score of the APIs in all watersheds. Ultimately, only satisfactory to good performing GWMs that effectively represent cold-region hydrological processes (including snow-related processes, permafrost) should be included in multi-model climate change impact assessments in Pan-Arctic watersheds.
Many fields have identified an increasing need to use global satellite precipitation products for hydrological applications, especially in ungauged basins. In this study, we conduct a comprehensive evaluation of three Satellite-based Precipitation Products (SPPs): Integrated Multi–satellitE Retrievals for GPM (IMERG) Final run V6, Soil Moisture to Rain (SM2RAIN)-Advanced SCATterometer (ASCAT) V1.5, and Multi-Source Weighted-Ensemble Precipitation (MSWEP) V2.2 for a subbasin of the Mekong River Basin (MRB). The study area of the Srepok River basin (SRB) represents the Central Highland sub-climatic zone in Vietnam under the impacts of newly built reservoirs during 2001–2018. In this study, our evaluation was performed using the Rainfall Assessment Framework (RAF) with two separated parts: (1) an intercomparison of rainfall characteristics between rain gauges and SPPs; and (2) a hydrological comparison of simulated streamflow driven by SPPs and rain gauges. Several key findings are: (1) IMERGF-V6 shows the highest performance compared to other SPP products, followed by SM2RAIN-ASCAT V1.5 and MSWEP V2.2 over assessments in the RAF framework; (2) MSWEP V2.2 shows discrepancies during the dry and wet seasons, exhibiting very low correlation compared to rain gauges when the precipitation intensity is greater than 15 mm/day; (3) SM2RAIN–ASCAT V1.5 is ranked as the second best SPP, after IMERGF-V6, and shows good streamflow simulation, but overestimates the wet seasonal rainfall and underestimates the dry seasonal rainfall, especially when the precipitation intensity is greater than 20 mm/day, suggesting the need for a recalibration and validation of its algorithm; (4) SM2RAIN-ASCAT had the lowest bias score during the dry season, indicating the product’s usefulness for trend analysis and drought detection; and (5) RAF shows good performance to evaluate the performance of SPPs under the impacts of reservoirs, indicating a good framework for use in other similar studies. The results of this study are the first to reveal the performance of MSWEP V2.2 and SM2RAIN-ASCAT V1.5. Additionally, this study proposes a new rainfall assessment framework for a Vietnam basin which could support future studies when selecting suitable products for input into hydrological model simulations in similar regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.