Crucial commercial and space applications require the detection of broadband ultraviolet (UV) rays spanning from UV-A to UV-C. In this study, the authors demonstrate a broadband UV photodetector employing a p-type NiOx layer and an n-type β-Ga2O3 heterostructure in PIN configuration for the first time. Simulations are conducted to optimize the doping concentration and thickness of the NiOx layer, ensuring that (a) a reasonable depletion width is maintained within the NiOx layer for UV-A and UV-B light absorption; (b) anode ohmic contacts are formed on the nondepleted NiOx film, and (c) >70% of the UV-C light is absorbed by β-Ga2O3. The optimized NiOx/ β-Ga2O3 PIN photodiode exhibits good responsivity to incident light wavelengths in the UV-A, UV-B, and UV-C regions. While the NiOx layer is considered to be responsible for providing good photoresponsivity in the UV-A and UV-B regions, a highly resistive (near-intrinsic) β-Ga2O3 layer is required for the absorption of incident UV-C light. A record detectivity of >1011 cmHz0.5W−1 for the UV-B and UV-C regions and >1010 cmHz0.5W−1 for the UV-A region is observed in the NiOx/ β-Ga2O3 heterostructure PIN photodiode during the self-powered operation. The results presented in this study are promising and instigate device design strategies for (ultra)wide bandgap semiconductor-based broadband UV PIN photodetectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.