Trichloroethene (TCE) and perchlorate (ClO4 –) are cocontaminants at multiple Superfund sites. Fe0 is often used during TCE bioremediation with Dehalococcoides mccartyi to establish anoxic conditions in the aquifer. However, the synergy between Fe0 abiotic reactions and microbiological TCE and ClO4 – reductions is poorly understood and seldom addressed in the literature. Here, we investigated the effects of Fe0 and its oxidation product, Fe2 +, at field-relevant concentrations in promoting microbial TCE and ClO4 – reductions. Using semibatch microcosms with a Superfund site soil and groundwater, we showed that the high Fe0 concentration (16.5 g L–1) expected during Fe0 in situ injection mostly yielded TCE abiotic reduction to ethene/ethane. However, such concentrations obscured dechlorination by D. mccartyi, impeded ClO4 – reduction, and enhanced SO4 2– reduction and methanogenesis. Fe2 + at 0.25 g L–1 substantially delayed conversion of TCE to ethene when compared to no-Fe controls. A low concentration of aged-Fe0 synergistically promoted microbiological TCE dechlorination to ethene while achieving complete ClO4 – reduction. Collectively, these results illustrate scenarios relevant at or downstream of Fe0 injection zones when Fe0 is used to facilitate microbial dechlorination. Results also underscore the potential detrimental effects of Fe0 and bioaugmentation cultures coinjection for in situ treatment of chlorinated ethenes and ClO4 –.
Fe0 is a powerful chemical reductant with applications for remediation of chlorinated solvents, including tetrachloroethene and trichloroethene. Its utilization efficiency at contaminated sites is limited because most of the electrons from Fe0 are channeled to the reduction of water to H2 rather than to the reduction of the contaminants. Coupling Fe0 with H2-utilizing organohalide-respiring bacteria (i.e., Dehalococcoides mccartyi) could enhance trichloroethene conversion to ethene while maximizing Fe0 utilization efficiency. Columns packed with aquifer materials have been used to assess the efficacy of a treatment combining in space and time Fe0 and aD. mccartyi-containing culture (bioaugmentation). To date, most column studies documented only partial conversion of the solvents to chlorinated byproducts, calling into question the feasibility of Fe0 to promote complete microbial reductive dechlorination. In this study, we decoupled the application of Fe0 in space and time from the addition of organic substrates andD. mccartyi-containing cultures. We used a column containing soil and Fe0 (at 15 g L–1 in porewater) and fed it with groundwater as a proxy for an upstream Fe0 injection zone dominated by abiotic reactions and biostimulated/bioaugmented soil columns (Bio-columns) as proxies for downstream microbiological zones. Results showed that Bio-columns receiving reduced groundwater from the Fe0-column supported microbial reductive dechlorination, yielding up to 98% trichloroethene conversion to ethene. The microbial community in the Bio-columns established with Fe0-reduced groundwater also sustained trichloroethene reduction to ethene (up to 100%) when challenged with aerobic groundwater. This study supports a conceptual model where decoupling the application of Fe0 and biostimulation/bioaugmentation in space and/or time could augment microbial trichloroethene reductive dechlorination, particularly under oxic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.