Global solar radiation (GSR) is a critical variable for designing photovoltaic cells, solar furnaces, solar collectors, and other passive solar applications. In Nepal, the high initial cost and subsequent maintenance cost required for the instrument to measure GSR have restricted its applicability all over the country. The current study compares six different temperature-based empirical models, artificial neural network (ANN), and other five different machine learning (ML) models for estimating daily GSR utilizing readily available meteorological data at Biratnagar Airport. Amongst the temperature-based models, the model developed by Fan et al. performs better than the rest with an R2 of 0.7498 and RMSE of 2.0162 MJm−2d−1. Feed-forward multilayer perceptron (MLP) is utilized to model daily GSR utilizing extraterrestrial solar radiation, sunshine duration, maximum and minimum ambient temperature, precipitation, and relative humidity as inputs. ANN3 performs better than other ANN models with an R2 of 0.8446 and RMSE of 1.4595 MJm−2d−1. Likewise, stepwise linear regression performs better than other ML models with an R2 of 0.8870 and RMSE of 1.5143 MJm−2d−1. Thus, the model developed by Fan et al. is recommended to estimate daily GSR in the region where only ambient temperature data are available. Similarly, a more robust ANN3 and stepwise linear regression models are recommended to estimate daily GSR in the region where data about sunshine duration, maximum and minimum ambient temperature, precipitation, and relative humidity are available.
Rapid industrialization and population growth have elevated the concerns over water quality. Excessive nitrates and phosphates in the water system have an adverse effect on the aquatic ecosystem. In recent years, machine learning (ML) algorithms have been extensively employed to estimate water quality over traditional methods. In this study, the performance of nine different ML algorithms is evaluated to predict nitrate and phosphorus concentration for five different watersheds with different land-use practices. The land-use distribution affects the model performance for all methods. In urban watersheds, the regular and predictable nature of nitrate concentration from wastewater treatment plants results in more accurate estimates. For the nitrate prediction, ANN outperforms other ML models for the urban and agricultural watersheds, while RT-BO performs well for the forested Grand watershed. For the total phosphorus prediction, ensemble-BO and M-SVM outperform other ML models for the agricultural and forested watershed, while the ANN performs better than other ML models for the urban Cuyahoga watershed. In predicting phosphorus concentration, the model predictability is better for agricultural and forested watersheds. Regarding consistency, Bayesian optimized RT, ensemble, and GPR consistently yielded good performance for all watersheds. The methodology and results outlined in this study will assist policymakers in accurately predicting nitrate and phosphorus concentration which will be instrumental in drafting a proper plan to deal with the problem of water pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.