Synthesis of ligand-functionalized nanomaterials with control over size, shape, and ligand orientation facilitates the design of targeted nanomedicines for therapeutic purposes. DNA nanotechnology has emerged as a powerful tool to rationally construct two- and three-dimensional nanostructures, enabling site-specific incorporation of protein ligands with control over stoichiometry and orientation. To efficiently target cell surface receptors, exploration of the parameters that modulate cellular accessibility of these nanostructures is essential. In this study, we systematically investigate tunable design parameters of antibody-functionalized DNA nanostructures binding to therapeutically relevant receptors, including the programmed cell death protein 1, the epidermal growth factor receptor, and the human epidermal growth factor receptor 2. We show that, although the native affinity of antibody-functionalized DNA nanostructures remains unaltered, the absolute number of bound surface receptors is lower compared to soluble antibodies due to receptor accessibility by the nanostructure. We explore structural determinants of this phenomenon to improve efficiency, revealing that receptor binding is mainly governed by nanostructure size and DNA handle location. The obtained results provide key insights in the ability of ligand-functionalized DNA nanostructures to bind surface receptors and yields design rules for optimal cellular targeting.
Synthesis of ligand-functionalized nanomaterials with control over size, shape and ligand orientation, facilitates the design of tailored nanomedicines for therapeutic purposes. DNA nanotechnology has emerged as a powerful tool to rationally construct two- and three-dimensional nanostructures, enabling site-specific incorporation of protein ligands with control over stoichiometry and orientation. To efficiently target cell surface receptors, exploration of the parameters that modulate cellular accessibility of these nanostructures is essential. In this study we systematically investigate tunable design parameters of antibody-functionalized DNA nanostructures binding to therapeutically relevant receptors. We show that, although the native affinity of antibody-functionalized DNA nanostructures remains unaltered, the absolute number of bound surface receptors is lower compared to soluble antibodies and is mainly governed by nanostructure size and DNA handle location. The obtained results provide key insights in the ability of ligand-functionalized DNA nanostructures to bind surface receptors and yields design rules for optimal cellular targeting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.