The neuron-specific phosphoprotein B-50 was originally identified as a phosphoprotein in synaptic plasma membranes isolated from adult brain tissue. In this paper we study the reinnervation of the soleus muscle, a target muscle of sciatic nerve axons, using affinity-purified anti-B-50 antibodies. Light-microscopical evaluation of the reinnervation process revealed that the period of muscle fiber reinnervation corresponds closely with the time in which high B-50 immunoreactivity was observed in the nerve fibers that invade the muscle and in the newly formed neuromuscular junctions. Upon completion of reinnervation, B-50 immunoreactivity decreased. In the newly innervating terminals, B-50 was associated with presynaptic vesicular structures and with the presynaptic plasma membrane. In intact mature neuromuscular junctions, virtually no B-50 immunoreactivity could be detected with either light- or electron-microscopic procedures. These observations corroborate the association of high levels of B-50/GAP43 during axon outgrowth and support the concept that B-50 may be a key molecule in the reconstruction of axonal structures. We also observed an unexpected transient increase in B-50 immunoreactivity in the degenerating neuromuscular junctions. This observation cannot be explained in terms of increased neuronal synthesis of B-50, since the degenerating axon processes have been completely disconnected from their cell bodies. Thus, our evidence implies that a rise of B-50 immunoreactivity can be associated with stages of neuronal degeneration as well as with those of neuronal differentiation and axon outgrowth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.