Background
Retinitis pigmentosa (RP) is a hereditary retinal disease which leads to visual impairment. The onset and progression of RP has physiological consequences that affects the ocular environment. Some of the key non-genetic factors which hasten the retinal degeneration in RP include oxidative stress, hypoxia and ocular inflammation. In this study, we investigated the status of the ocular immune privilege during retinal degeneration and the effect of ocular immune changes on the peripheral immune system in RP. We assessed the peripheral blood mononuclear cell stimulation by retinal antigens and their immune response status in RP patients. Subsequently, we examined alterations in ocular immune privilege machineries which may contribute to ocular inflammation and disease progression in rd1 mouse model.
Results
In RP patients, we observed a suppressed anti-inflammatory response to self-retinal antigens, thereby indicating a deviated response to self-antigens. The ocular milieu in rd1 mouse model indicated a significant decrease in immune suppressive ligands and cytokine TGF-B1, and higher pro-inflammatory ocular protein levels. Further, blood–retinal-barrier breakdown due to decrease in the expression of tight junction proteins was observed. The retinal breach potentiated pro-inflammatory peripheral immune activation against retinal antigens and caused infiltration of the peripheral immune cells into the ocular tissue.
Conclusions
Our studies with RP patients and rd1 mouse model suggest that immunological consequences in RP is a contributing factor in the progression of retinal degeneration. The ocular inflammation in the RP alters the ocular immune privilege mechanisms and peripheral immune response. These aberrations in turn create an auto-reactive immune environment and accelerate retinal degeneration.
In the present work, the degradation of Direct Red 81 by ozonation was studied. The interactive effects of the influencing factors (dye concentration = 500–2,000 mg/L; time = 10–30 min; pH = 7.0–11.0) on degradation efficiency was critically examined through experimental design optimization by central composite design under the response surface methodology. The high correlation coefficients (R2 = 0.976 & adjusted R2 = 0.958) obtained by analysis of variance (ANOVA) demonstrated close fit between the experimental and the predicted values. Optimized conditions under specified cost-driven restraints were obtained for the highest desirability (i.e. degradation of 1,210.59 mg/L dye) at pH = 11.0, initial dye concentration = 2,000 mg/L and ozone exposure time of 27.16 min. The degradation of Direct Red 81 was confirmed through Fourier transform infrared spectroscopy (FTIR) analysis and UV-Vis spectrometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.