The increasing amount of research on solution-processable, organic donor-acceptor bulk heterojunction photovoltaic systems, based on blends of conjugated polymers and fullerenes has resulted in devices with an overall power-conversion efficiency of 6%. For the best devices, absorbed photon-to-electron quantum efficiencies approaching 100% have been shown. Besides the produced current, the overall efficiency depends critically on the generated photovoltage. Therefore, understanding and optimization of the open-circuit voltage (Voc) of organic solar cells is of high importance. Here, we demonstrate that charge-transfer absorption and emission are shown to be related to each other and Voc in accordance with the assumptions of the detailed balance and quasi-equilibrium theory. We underline the importance of the weak ground-state interaction between the polymer and the fullerene and we confirm that Voc is determined by the formation of these states. Our work further suggests alternative pathways to improve Voc of donor-acceptor devices.
The open-circuit voltage ͑V oc ͒ of polymer:fullerene bulk heterojunction solar cells is determined by the interfacial charge-transfer ͑CT͒ states between polymer and fullerene. Fourier-transform photocurrent spectroscopy and electroluminescence spectra of several polymer:fullerene blends are used to extract the relevant interfacial molecular parameters. An analytical expression linking these properties to V oc is deduced and shown to be valid for photovoltaic devices comprising three commonly used conjugated polymers blended with the fullerene derivative ͓6,6͔-phenyl-C61-butyric acid methyl ester ͑PCBM͒. V oc is proportional to the energy of the CT states E CT . The energetic loss q⌬V between E CT and qV oc vanishes when approaching 0 K. It depends linearly on T and logarithmically on illumination intensity. Furthermore q⌬V can be reduced by decreasing the electronic coupling between polymer and fullerene or by reducing the nonradiative recombination rate. For the investigated devices we find a loss q⌬V of ϳ0.6 eV at room temperature and under solar illumination conditions, of which ϳ0.25 eV is due to radiative recombination via the CT state and ϳ0.35 eV is due to nonradiative recombination.
Photocurrent generation by charge-transfer (CT) absorption is detected in a range of conjugated polymer: [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) based solar cells. The low intensity CT absorption bands are observed using a highly sensitive measurement of the external quantum efficiency (EQE) spectrum by means of Fourier-transform photocurrent spectroscopy (FTPS). The presence of these CT bands implies the formation of weak groundstate charge-transfer complexes in the studied polymer:fullerene blends. The effective band gap (E g ) of the material blends used in these photovoltaic devices is determined from the energetic onset of the photocurrent generated by CT absorption. It is shown that for all
In this article we report the weak but omnipresent electroluminescence (EL) from several types of organic polymer:fullerene bulk heterojunction solar cells biased in the forward direction. The light emitted from blends of some commonly used polymers and the fullerene molecule is significantly different from that of any of the pure materials comprising the blend. The lower energy of the blend EL is found to correlate with both the voltage onset of emission and the open-circuit voltage of the photovoltaic cell under solar illumination. We accordingly interpret the emission to originate from interfacial charge transfer state recombination and emphasize EL as a very valuable tool to characterize the charge transfer state present in donor/acceptor organic photovoltaic (OPV) cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.