This study examines design preference in Completely Randomized (CR) split-plot experiments involving random whole plot factor effect and fixed sub-plot factor effect. Many previous works on optimally designing split-plot experiments assumed only factors with fixed levels. However, the cases where interests are on random factors have received little attention. These problems have similarities with optimal design of experiments for fixed parameters of non-linear models because the solution rely on the unknown parameters. Design Space (DS) containing exhaustive list of balanced designs for a fixed sample size were compared for optimality using the product of determinants of derived information matrices of the Maximum Likelihood (ML) estimators equivalent to random and fixed effect in the model. Different magnitudes of components of variance configurations where variances of factor effects are larger than variances of error term were empirically used for the comparisons. The results revealed that the D-optimal designs are those with whole plot factor levels greater than replicates within each level of whole plot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.