Background
Brucellosis is a zoonotic disease caused by
Brucella
species. It has been estimated that more than 500,000 new cases of Brucellosis occur annually all around the world. Relapse of the disease is one of the most important challenges. The most important reason for the relapse of brucellosis is the survival of the bacteria inside the macrophages, which makes them safe from the immune system and disrupts drug delivery mechanism.
Objectives
The present study was performed to assess the effects of Doxycycline-loaded Solid Lipid Nanoparticles (DOX-SLN) on the
Brucella melitensis
inside macrophages.
Methods
DOX-SLN was prepared using double emulsion method. The technological characterization of DOX-SLN, including particle size, zeta potential, polydispersity index (PDI), drug loading and encapsulation efficiency were used. Fourier-transform infrared spectroscopy (FTIR) and Differential scanning calorimetry (DSC) were used to assess the interactions between Nanoparticles (NPs) components and crystalline form of doxycycline. Moreover, the effect of DOX-SLN on the bacteria were compared with that of the doxycycline using various methods, including well diffusion, Minimum Inhibitory Concentration (MIC), and investigation of their effects on murine macrophage-like cells cell line J774A.1.
Results
The means of particle size, zeta potential, PDI, drug loading and encapsulation efficiency were 299 ± 34 nm, − 28.7 ± 3.2 mV, 0.29 ± 0.027, 11.2 ± 1.3%, and 94.9 ± 3.2%, respectively. The morphology of NPs were spherical with a smooth surface. No chemical reaction was occurred between the components. Doxycycline was located within NP matrix in its molecular form. The DOX-SLN significantly decreased the microbial loading within macrophages (3.5 Log) in comparison with the free doxycycline.
Conclusions
Since the DOX-SLN showed better effects on
B. melitensis
enclosed in macrophages than the free doxycycline, it is recommended to use it for treating brucellosis and preventing relapse.
The present study analyzed the dose-dependent cyto- and genotoxicity of graphene oxide and reduced graphene oxide on spermatogonial stem cells (SSCs) for the first time. The results showed that graphene oxide significantly increased oxidative stress at concentrations of 100 and 400μg/ml, while low concentrations did not have a significant effect. In addition, according to the MTT assay, the cell number decreased in high-concentration (100 and 400μg/ml) graphene oxide-treated samples compared to untreated cells. However, a reduced graphene-treated sample demonstrated a significant increase in cell number. Moreover, microscopic analysis found high concentrations of graphene nanosheets in cell culture medium that reduced the number of colonies and colony forming cells. We conclude that a high concentration of graphene can be toxic to SSCs. However, such toxicity can be reduced by the surface modification of graphene nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.