Kahalalide F (1) shows remarkable antitumor activity against different carcinomas and has recently completed phase I clinical trials and is being evaluated in phase II clinical studies. The antifungal activity of this molecule has not been thoroughly investigated. In this report, we focused on acetylation and oxidation of the secondary alcohol of threonine, as well as reductive alkylation of the primary amine of ornithine, and each product was evaluated for improvements in antifungal activity. 1 and analogues do not exhibit antimalarial, antileishmania, or antibacterial activity; however, the antifungal activity against different strains of fungi was particularly significant. This series of compounds was highly active against Fusarium spp., which represents an opportunistic infection in humans and plants. The in vitro cytotoxicity for the new analogues of 1 was evaluated in the NCI 60 cell panel. Analogue 5 exhibited enhanced potency in several human cancer cell lines relative to 1.
Two new cyclic depsipeptides, 5-OHKF (1) and norKA (2), together with the known congeners kahalalide F (3) and isokahalalide F ((4S)- methylhexanoic kahalalide F) (4) were isolated from the green alga Bryopsis pennata. The structures of the new compounds were established on the basis of extensive 1D and 2D NMR spectroscopic analysis and mass spectrometric (ESIMS) data. The absolute configuration of each amino acid of 5-OHKF (1) and norKA (2) was determined by chemical degradation and Marfey’s analysis. The biological activities of these two compounds are also reported.
Kahalalide F (KF) and the regioisomer isoKF are novel anticancer drugs of marine origin and currently under clinical investigation. Here we report the synthesis of two new KF analogs with significant in vitro and in vivo antifungal and antitumor activities. The primary amine hydrogen of ornithine in KF has been replaced with 4-fluoro-3-methylbenzyl and morpholin-4-yl-benzyl via reductive N-alkylation. The TGI of these analogs using the NCI-60 cell line screening revealed promising results when compared to paclitaxel. The result of in vivo hollow fiber and animal toxicity assays are presented.
The manzamines represent a class of marine natural products that show considerable promise in the control of malaria but generate GI distress in rodents when administered orally in high doses. In an effort to generate manzamine prodrugs with improved antimalarial activity and reduced GI toxicity, we prepared acetylated 8-hydroxymanzamine A analogues including 8-acetoxymanzamine A (3) and 8,12-diacetoxymanzamine A (4), and 8-methoxymanzamine A (5) beginning with 8-hydroxymanzamine A (2). The semisynthetic analogues were assayed for antimalarial and antimicrobial activities, cytotoxicity, and biological and chemical stability. Due to gradual hydrolysis of the ester group, application of monoacetate 3 as an antimalarial prodrug was investigated. The in vitro and in vivo bioassays show that acetylated analogues exhibit significant antimalarial activity (IC50(3) 9.6–30 ng/mL), which are comparable to the parent molecule; however the monoaceate 3 was shown to actually produce higher toxicity at 30 mg/kg when administered orally.
Quaternary carbolinium salts have been reported to show improved antimalarial activity and reduced cytotoxicity as compared to electronically neutral beta-carbolines. In this study, mono- and di-methylated quaternary carbolinium cations of manzamine A were synthesized and evaluated for their in vitro antimalarial and antimicrobial activity, cytotoxicity, and also their potential for glycogen synthase kinase (GSK-3beta) inhibition using molecular docking studies. Among the analogs, 2-N-methylmanzamine A (2) exhibited antimalarial activity (IC(50) 0.7-1.0microM) but was less potent than manzamine A. However the compound was significantly less cytotoxic to mammalian kidney fibroblasts and the selectivity index was in the same range as manzamine A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.