Acanthamoeba Keratitis (AK) can lead to substantial vision loss and morbidity among contact lens wearers. Misdiagnosis or delayed diagnosis is a major factor contributing to poor outcomes of AK. This study aimed to assess the effect of two antibiotics and one anaesthetic drug used in the diagnosis and nonspecific management of keratitis on the autofluorescence patterns of Acanthamoeba and two common bacteria that may also cause keratitis. Acanthamoeba castellanii ATCC 30868, Pseudomonas aeruginosa ATCC 9027, and Staphylococcus aureus ATCC 6538 were grown then diluted in either PBS (bacteria) or ¼ strength Ringer’s solution (Acanthamoeba) to give final concentrations of 0.1 OD at 660 nm or 104 cells/mL. Cells were then treated with ciprofloxacin, tetracycline, tetracaine, or no treatment (naïve). Excitation–emission matrices (EEMs) were collected for each sample with excitation at 270–500 nm with increments in 5 nm steps and emission at 280–700 nm at 2 nm steps using a Fluoromax-4 spectrometer. The data were analysed using MATLAB software to produce smoothed color-coded images of the samples tested. Acanthamoeba exhibited a distinctive fluorescence pattern compared to bacteria. The addition of antibiotics and anaesthetic had variable effects on autofluorescence. Tetracaine altered the fluorescence of all three microorganisms, whereas tetracycline did not show any effect on the fluorescence. Ciprofloxacin produced changes to the fluorescence pattern for the bacteria, but not Acanthamoeba. Fluorescence spectroscopy was able to differentiate Acanthamoeba from P. aeruginosa and S. aureus in vitro. There is a need for further assessment of the fluorescence pattern for different strains of Acanthamoeba and bacteria. Additionally, analysis of the effects of anti-amoebic drugs on the fluorescence pattern of Acanthamoeba and bacteria would be prudent before in vivo testing of the fluorescence diagnostic approach in the animal models.
Study question Can we separate between control and reversine-treated cells within the inner cell mass (ICM) of the mouse preimplantation embryo by using label-free and non-invasive hyperspectral microscopy? Summary answer Hyperspectral microscopy is able to discern between control and reversine-treated cells using cellular autofluorescence in the complete absence of fluorescence tags. What is known already Embryo mosaicism (containing cells that are euploid (46 chromosomes) and aneuploid (deviation from the expected number of chromosomes)) affects up to 17.3% of human blastocyst embryos. Current diagnosis of aneuploidy in the IVF clinic involves a biopsy of trophectoderm (TE) cells or spent media followed by sequencing. In some blastocyst embryos these approaches will fail to diagnose of the proportion of aneuploid cells within the fetal lineage (ICM). Study design, size, duration The impact of aneuploidy on cellular metabolism was assessed by using cellular autofluoresence and hyperspectral microscopy (broad spectral profile). Two models were employed: (i) Primary human fibroblast cells with known karyotypes (4-6 independent replicates, euploid n = 467; aneuploid n = 969) and reversine induced aneuploidy in mouse embryos (5-8 independent replicates, 30-44 cells per group). Both models were subjected to hyperspectral imaging to quantify native cell fluorescence. Participants/materials, setting, methods The human model is comprised of euploid (male and female) and aneuploid (triploid and trisomies: 13, 18, 21, XXX, and XXY) primary human fibroblast cells. For the mouse model, we treated embryos with reversine, a reversible spindle assembly checkpoint inhibitor, during the 4- to 8-cell division. Individual blastomeres were dissociated from control and reversine treated 8-cell embryos. Blastomeres were either imaged directly or used to generate chimeric blastocysts with differing ratios of control:reversine-treated cells. Main results and the role of chance Following unsupervised linear unmixing, the relative abundance of metabolic cofactors was quantified: reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavins with the subsequent calculation of the optical redox ratio (ORR: Flavins/[NAD(P)H + Flavins]). Primary human fibroblast cells displayed an increase in the relative abundance of NAD(P)H with a decrease in flavins, leading to a significant reduction in the ORR for aneuploid cells (P < 0.05). The mouse embryos displayed an identical trend as the human model between control and reversine-treated embryos. Mathematical algorithms were applied and able to distinguish between (i) euploid and aneuploid primary human fibroblast cells, (ii) control and reversine-treated mouse blastomeres and (iii) chimeric blastocysts with differing ratios of control and reversine-treated cells. The accuracy of these separations was supported by receiver operating characteristic curves with areas under the curve. We also showed that hyperspectral imaging of the preimplantation embryo does not impact on embryo developmental competence, pregnancy outcome and offspring health in a mouse model. We believe the role of chance is low as both human somatic cells and mouse embryos showed a consistent shift in cellular metabolism in response to human fibroblast cells that are aneuploid and reversine treated mouse embryos. Limitations, reasons for caution Further validation of our approach could include sequencing of the ICM of individual blastocysts to determine the proportion of aneuploid cells in ICM and correlate this with the metabolic profile obtained through hyperspectral imaging. Wider implications of the findings With hyperspectral imaging able to discriminate between (i) euploid and aneuploid human fibroblast cells and (ii) control and reversine-treated mouse embryos, this could be an accurate, non-invasive and label-free optical imaging approach to assess mosaicism within the ICM of mouse embryos, potentially leading to a new diagnostic tool for embryos. Trial registration number Not applicable
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.