A series of novel benzofuran-1,2,3-triazole hybrids were synthesized and investigated as fungicidal preservatives. The compounds were evaluated for their antifungal potential against white-rot (Trametes versicolor), dry brown-rot (Poria placenta), and wet brown-rot (Coniophora puteana and Gloeophyllum trabeum) fungi, at different concentrations (500 ppm and 1000 ppm). The tests of the final products (8a, 8b, 8c, 8d, 8e, 8f, and 8g) demonstrated that compound N-((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)benzofuran-2-carboxamide (8f) at a concentration of 500 ppm was the most active against wet brown-rot C. puteana (23.86% inhibition) and G. trabeum (47.16% inhibition) fungi. However, testing demonstrated that compounds 8a, 8b, 8c, 8d, and 8g at a concentration of 500 ppm did not exhibit acceptable antifungal effects against white-rot T. versicolor and dry brown-rot P. placenta fungi.
A series of novel benzofuran-1,3,4-oxadiazole hybrids were synthesized and evaluated as antifungal agents. The synthetic pathway was started from salicylaldehyde, which afforded 5-(substituted benzylthio)-1,3,4-oxadiazole derivatives in moderate to good yields. The compounds were investigated for their antifungal potential against white-rot, Trametes versicolor and brown-rot, Poria placenta and Coniophora puteana fungi at different concentrations (500, 1000 ppm). The obtaining results demonstrated that most of the compounds at 500 ppm concentration did not exhibit acceptable antifungal effects but they had better antifungal activity at 1000 ppm concentration. Compounds 5a, 5c, and 5i showed inhibition percentages of 14.6%, 23.0%, and 14.7%, against the growth of P. placenta and C. puteana, respectively. Among the compounds, the 2-(benzofuran-2-yl)-5-((2,6-difluorobenzyl)thio)-1,3,4-oxadiazole (5h) hybrid was the most active one.
Different concentrations of ethanolic extracts of thyme (Zataria multiflora) and rosemary (Rosmarinus officinalis) were evaluated to determine their antimicrobial activity using the agar-well diffusion method. The values of inhibition zone diameter (IZD) for Candida albicans fungus and Staphylococcus aureus Gram-positive bacteria were determined. The bioactivities of two various extracts were studied, and the chemical composition of the extracts were identified using gas chromatography-mass spectrometry (GC-MS) technique. The results of the test showed that at concentrations of 10% and 40% thyme extract, the values of IZD were 12.5 mm and 23.3 mm, respectively, against the growth of S. aureus, which were higher than C. albicans (7.0 mm and 22.5 mm, respectively). The rosemary extract at concentrations of 20% and 60% showed lower antibacterial activity against S. aureus (4.7 mm and 8.7 mm IZD, respectively) and lower antifungal activity against C. albicans (12.2 mm and 1.7 mm IZD, respectively). At a concentration of 40% thyme extract, the highest antibacterial (23.3 mm IZD) and antifungal (22.5 mm IZD) activities were observed. The GC/MS analysis showed that carvacrol (52.3%), linalool L (16%), and thymol (9.6%) were the main components of thyme extract, while in the rosemary extract β-amyrone (18.0%), verbenone (8.0%), and 1,8-cineole (7.26%) were the major constituents.
The yew tree (Taxus baccata) is an ancient species in the world that has both toxic and medicinal properties. Identifying the chemical components of different parts of this tree can be useful in the better understanding of the toxicity and medicinal effect of this plant. Therefore, the chemical composition of water: methanol extracts of T. baccata L. leaf and male cones obtained from endemic species of Iran were characterized using GC-MS analysis. Twenty two components were identified for leaves including oleic acid (20.87%) and octadeca-9,12-dien-1-ol (17.77%) as the most abundant components, and seventeen components were identified for male cones which were 3-O-methyl-d-glucose (64.00%) and oleic acid (13.32%) as the most abundant components. Furthermore, the potential applications of some of the characterized components are discussed into the depths.
The hydrodistilled volatile essential oils extracted from the female cones of Cupressus arizonica Greene that harvested in winter and spring seasons were analysed for their chemical composition by using gas chromatography-mass spectrometry (GC/MS). Twenty-four and seventeen components were identified, accounting for winter (95.5%) and spring (96.9%) of the total oils volume, respectively. Monoterpenoids (winter 93.7% and spring 95.0%) dominated the identified components in the essential oils, followed by a small portion of sesquiterpenoids (winter 1.8% and spring 1.9%). Monoterpene hydrocarbons (MH) (winter 90.9% and spring 94.9%) were the principal subclasses of components with α-pinene (winter 42% and spring 72%), β-myrcene (winter 18.5% and spring 7.7%), δ-3-carene (winter 11.3% and spring 5.1%), limonene (9.4% for winter), and β-pinene (5.3% for spring) as main constituents. Limonene (9.4%), camphor (0.2%), exo-methylcamphenilol (0.2%), terpinene-4-ol (0.6%), β-citronellol (0.9%), and bornyl acetate (0.3%) were representative of the monoterpene hydrocarbon and oxygen-containing monoterpenoids (OM) in winter essential oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.