a b s t r a c tParabolic trough concentrators are the most widely deployed type of solar thermal power plant. The majority of parabolic trough plants operate up to 400 C. However, recent technological advances involving molten salts instead of oil as working fluid the maximum operating temperature can exceed 550 C. CSP plants face several technical problems related to the structural integrity and inspection of critical components such as the solar receivers and insulated piping of the coolant system. The inspection of the absorber tube is very difficult as it is covered by a cermet coating and placed inside a glass envelope under vacuum. Volumetric solar receivers are used in solar tower designs enabling increased operational temperature and plant efficiency. However, volumetric solar receiver designs inherently pose a challenging inspection problem for maintenance engineers due to their very complex geometry and characteristics of the materials employed in their manufacturing. In addition, the rest of the coolant system is insulated to minimise heat losses and therefore it cannot be inspected unless the insulation has been removed beforehand. This paper discusses the non-destructive evaluation techniques that can be employed to inspect solar receivers and insulated pipes as well as relevant research and development work in this field.
Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C.
Concentrated Solar Plants (CSPs) are used in solar thermal industry for collecting and converting sunlight into electricity. Parabolic trough CSPs are the most widely used type of CSP and an absorber tube is an essential part of them. The hostile operating environment of the absorber tubes, such as high temperatures (400-550 °C), contraction/expansion, and vibrations, may lead them to suffer from creep, thermo-mechanical fatigue, and hot corrosion. Hence, their condition monitoring is of crucial importance and a very challenging task as well. Electromagnetic Acoustic Transducers (EMATs) are a promising, non-contact technology of transducers that has the potential to be used for the inspection of large structures at high temperatures by exciting Guided Waves. In this paper, a study regarding the potential use of EMATs in this application and their performance at high temperature is presented. A Periodic Permanent Magnet (PPM) EMAT with a racetrack coil, designed to excite Shear Horizontal waves (SH0), has been theoretically and experimentally evaluated at both room and high temperatures. OPEN ACCESSAppl. Sci. 2015Sci. , 5 1716
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.