This letter introduces a new class of miniaturized reflectarray unit cells with increased phase swing employing Minkowski fractal-shaped patch-slot elements. Square, 1st Minkowski, and 2nd Minkowski fractal patches are designed as a reflectarray unit cell. A slot with variable lengths of mm is used in the ground plane to perform the phase variation function. The resonant frequency corresponding to the maximum phase swing is reduced from 10.6 GHz for the square patch down to 8.8 and 8.3 GHz for the first-and second-order Minkowski fractal patches, respectively, which is equivalent to 17% and 22% size reduction. Unit cells with different patch type and slot length are fabricated, and close agreement is observed between the measured and simulated results. As it has been proven for conventional phased array antennas, this size reduction can lead to a decrease in mutual coupling in reflectarray antennas. Alternatively, it allows for smaller distance between reflectarray antenna elements, which renders a wider beam-scanning range.
The individual contributions of various gas discharge mechanisms to total pre-breakdown current in microgaps are quantified numerically. The variation of contributions of field emission and secondary electron emission with increasing electric field shows contrasting behavior even for a given gap size. The total current near breakdown decreases rapidly with gap size indicating that microscale discharges operate in a high-current, low-voltage regime. This study provides the first such analysis of breakdown mechanisms and aids in the formulation of physics-based theories for microscale breakdown.
In this paper, we study gas breakdown in micro/nanogaps at atmospheric pressure from low RF to high millimeter band. For gaps larger than about 10 μm, the breakdown voltage agrees with macroscale vacuum experiments, exhibiting a sharp decrease at a critical frequency, due to transition between the boundary- and diffusion-controlled regimes, and a gradual increase at very high frequencies as a result of inefficient energy transfer by field. For sub-micron gaps, a much lower breakdown is obtained almost independent of frequency because of the dominance of field emission.
Abstract-A new computationally efficient algorithm for reconstruction of lossy and inhomogeneous 1-D media by using inverse scattering method in time domain is proposed. In this algorithm, cosine Fourier series expansion is utilized in conjunction with finite difference time domain (FDTD) and particle swarm optimization (PSO) methods. The performance of the proposed algorithm is studied for several 1-D permittivity and conductivity profile reconstruction cases. Various types of regularization terms are examined and compared with each other in the presented method. It is shown that the number of unknowns in optimization routine is reduced to about 1/3 as compared with conventional methods which leads to a considerable reduction in the amount of computations, while the precision of the solutions would not be affected significantly. Another advantage of the proposed expansion method is that, since only a limited number of terms are taken in the expansion, the divergence of the algorithm is far less likely to occur. Sensitivity analysis of the suggested method to the number of expansion terms in the algorithm is studied, as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.