Abstract-Quartz grains subjected to high-strain-rate shock waves owing to meteorite or cometary impact on Earth's surface commonly display shock lamellae. These lamellae appear as remarkably straight, thin, planar features (microstructures) in sets within which lamellae are essentially parallel to each other and spaced 1 2 0 p m apart. Two or more intersecting sets are typically present. Shock lamellae are commonly recognized and identified by optical methods, by use of the transmission electron microscope (TEM), and by etching polished sections and subsequent examination with a scanning electron microscope (SEM) operated in the secondary electron mode. We present here a method for observing planar microstructures in shocked quartz by using a cathodoluminescence (CL) detector attached to a SEM. The method relies on the fact that planar microstructures in quartz arising as a result of shock display no CL whatever; thus, they show up as distinct, thin, black lines on otherwise luminescent quartz grains. We used scanning CL imaging to study shocked quartz from the Ries Crater, Germany, a well-known impact crater of Miocene age. We demonstrate that shockproduced planar microstructures are clearly displayed in SEM-CL images and can be distinguished from microfractures generated by tectonism, and subsequently filled with quartz, and other similar features not related to impact events. The SEM-CL method provides a powerful supplement to other methods of identifying shocked quartz. It commonly provides better spatial resolution than does standard optical methods, and does not require etching of quartz grains. Further, it is easier and faster to use than are TEM methods, although it is not capable of the fine-scale defect analysis possible with TEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.