Additive manufacturing for cementitious materials represents the most attractive frontier in the modern context of Construction 4.0. In addition to the technological progress of printing systems, the development of functional and low environmental impact printable mixtures is one of the current challenges of digital fabrication in building and architectural fields. This paper proposes a preliminary physical-mechanical analysis on environmentally friendly mortars, compatible with the extrusion-based printing process, made up of recycling rubber aggregates deriving from end-of-life tires. In this study, two groups of rubber particle samples (0–1 mm rubber powder and 2–4 mm rubber granules) were used to partially/totally replace the mineral fraction of the reference printable mixture. Four tire rubber powder-granules proportions were investigated and control mortar (100% sand) was also prepared to compare its properties with those of the rubber-cement samples in terms of printability properties, mechanical strength, ductility, and structural isotropy. Based on the experimental results, the rubber aggregates increase the mixture fluidity, promoting better inter-layer adhesion than the neat mix. This leads to greater mechanical isotropy. As already investigated in other research works on Rubber-Concrete technology, the addition of rubber particles increases the ductility of the material but reduces its mechanical strength. However, by correctly balancing the fine and coarse rubber fraction, promising physical-mechanical performances were demonstrated.
Additive manufacturing is one of the main topics of the fourth industrial revolution; defined as Industry 4.0. This technology offers several advantages related to the construction and architectural sectors; such as economic; environmental; social; and engineering benefits. The usage of concrete in additive technologies allows the development of innovative applications and complexity design in the world of construction such as buildings; housing modules; bridges; and urban and domestic furniture elements. The aim of this review was to show in detail a general panoramic of extrusion-based additive processes in the construction sector; the main advantages of using additive manufacturing with the respect to traditional manufacturing; the fundamental requirements of 3D printable material (fresh and hardened properties), and state-of-the-art aesthetic and architectural projects with functional properties.
In the last ten years, the Portland cement industry has received wide criticism due to its related high embodied energy and carbon dioxide footprint. Recently, numerous “clean” strategies and solutions were developed. Among these, geopolymer technology is gaining growing interest as a functional way to design more eco-friendly construction materials and for waste management issues suffered by various industries. Previous research has highlighted the attractive engineering properties of geopolymeric materials, especially in terms of mechanical properties and durability, resulting in even higher performance than ordinary concrete. This review provides a comprehensive analysis of current state-of-the-art and implementations on geopolymer concrete materials, investigating how the key process factors (such as raw materials, synthesis regime, alkali concentration, water dosage, and reinforcement fillers) affect the rheological, microstructural, durability, and mechanical properties. Finally, the paper elucidates some noteworthy aspects for future research development: innovative geopolymer-based formulations (including alkali-activated blends for additive manufacturing and thermo-acoustic insulating cellular compounds), concrete applications successfully scaled in the civil-architectural fields, and the perspective directions of geopolymer technology in terms of commercialization and large-scale diffusion.
The recycling of waste tires is of paramount importance for environmental protection and for economic reasons. The number of scrapped tires in the United States has reached 550 million per year and is still rising. Even higher numbers are estimated in the European Union, reaching 1 billion tires per year. Disused tires create waste with a highly negative environmental impact. Tire disposal mainly involves highly polluting treatments (e.g. combustion processes to produce fuel oil), with only a small percentage of waste (3% to 15%) destined for less-invasive treatments such as powdering. In this article we will look at previous studies in which different amounts of waste tire powder are combined with cement concrete mixtures to provide a final product with mechanical properties suitable for engineering applications. Previous work has shown that a good compressive strength can be achieved through replacing 30% of powdered tire with crushed sand. First, as the percentage of aggregation between crumb rubber and crushed sand increases, compressive strength decreases. Second, aggregation replacement of crumb rubber and crushed sand shows a reduction in density at around 10%. Third, the modulus of elasticity depends on the percentages added: the more rubber added to concrete, the less elastic the product will be. In addition, a less tough concrete means higher strength. However, adding rubber to concrete increases the toughness.1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.