5G mobile networks provide additional benefits in terms of lower latency, higher data rates, and more coverage, in comparison to 4G networks, and they are also coming close to standardization. For example, 5G has a new level of data transfer and processing speed that assures users are not disconnected when they move from one cell to another; thus, supporting faster connection. However, it comes with its own technical challenges relating to resource management, authentication handover and user privacy protection. In 5G, the frequent displacement of the users among the cells as a result of repeated authentication handovers often lead to a delay, contradicting the 5G objectives. In this paper, we propose a new authentication approach that utilizes blockchain and software defined networking (SDN) techniques to remove the re-authentication in repeated handover among heterogeneous cells. The proposed approach is designed to assure the low delay, appropriate for the 5G network in which users can be replaced with the least delay among heterogeneous cells using their public and private keys provided by the devised blockchain component while protecting their privacy. In our comparison between Proof-of-Work (POW)-based and network-based models, the delay of our authentication handover was shown to be less than 1ms. Also, our approach demonstrated less signaling overhead and energy consumption compared to peer models.
In recent years, Smart Farming (SF) and Precision Agriculture (PA) have attracted attention from both the agriculture industry as well as the research community. Altogether, SF and PA aim to help farmers use inputs (such as fertilizers and pesticides) more efficiently through using Internet of Things (IoT) devices, but in doing so, they create new security threats that can defeat this purpose in the absence of adequate awareness and proper countermeasures. A survey on different security-related challenges is required to raise awareness and pave they way for further research in this area. In this paper, we first itemize the security aspects of SF and PA. Next, we review the types of cyber attacks that can violate each of these aspects. Accordingly, we present a taxonomy on cyber-threats to SF and PA on the basis of their relations to different stages of Cyber-Kill Chain (CKC). Among cyber-threats, we choose Advanced Persistent Threats (APTs) for further study. Finally, we studied related risk mitigation strategies and countermeasure, and developed a future road map for further study in this area. This paper’s main contribution is a categorization of security threats within the SF/PA areas and provide a taxonomy of security threats for SF environments so that we may detect the behavior of APT attacks and any other security threat in SF and PA environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.