HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.
Summary Protein microbicides containing neutralizing antibodies and antiviral lectins may help to reduce the rate of infection with Human immunodeficiency virus (HIV) if it is possible to manufacture the components in large quantities at a cost affordable in HIV-endemic regions such as sub-Saharan Africa. We expressed the antiviral lectin griffithsin (GRFT), which shows potent neutralizing activity against HIV, in the endosperm of transgenic rice plants (Oryza sativa), to determine whether rice can be used to produce inexpensive GRFT as a microbicide ingredient. The yield of OSGRFT in the best-performing plants was 223 μg/g dry seed weight. We also established a one-step purification protocol, achieving a recovery of 74% and a purity of 80%, which potentially could be developed into a larger-scale process to facilitate inexpensive downstream processing. OSGRFT bound to HIV glycans with similar efficiency to GRFT produced in Escherichia coli. Whole-cell assays using purified OSGRFT and infectivity assays using crude extracts of transgenic rice endosperm confirmed that both crude and pure OSGRFT showed potent activity against HIV and the crude extracts were not toxic towards human cell lines, suggesting they could be administered as a microbicide with only minimal processing. A freedom to operate analysis confirmed that GRFT produced in rice is suitable for commercial development, and an economic evaluation suggested that 1.8 kg/ha of pure GRFT could be produced from rice seeds. Our data therefore indicate that rice could be developed as an inexpensive production platform for GRFT as a microbicide component.
SignificanceOur paper provides an approach for the durable deployment of anti-HIV agents in the developing world. We developed a transgenic rice line expressing three microbicidal proteins (the HIV-neutralizing antibody 2G12 and the lectins griffithsin and cyanovirin-N). Simultaneous expression in the same plant allows the crude seed extract to be used directly as a topical microbicide cocktail, avoiding the costs of multiple downstream processes. This groundbreaking strategy is realistically the only way that microbicidal cocktails can be manufactured at a cost low enough for the developing world, where HIV prophylaxis is most in demand.
The majority of new Human Immunodeficiency Virus (HIV)-1 infections are acquired via sexual transmission at mucosal surfaces. Partial efficacy (31.2%) of the Thai RV144 HIV-1 vaccine trial has been correlated with Antibody-dependent Cellular Cytotoxicity (ADCC) mediated by non-neutralizing antibodies targeting the V1V2 region of the HIV-1 envelope. This has led to speculation that ADCC and other antibody-dependent cellular effector functions might provide an important defense against mucosal acquisition of HIV-1 infection. However, the ability of antibody-dependent cellular effector mechanisms to impact on early mucosal transmission events will depend on a variety of parameters including effector cell type, frequency, the class of Fc-Receptor (FcR) expressed, the number of FcR per cell and the glycoslyation pattern of the induced antibodies. In this study, we characterize and compare the frequency and phenotype of IgG (CD16 [FcγRIII], CD32 [FcγRII] and CD64 [FcγRI]) and IgA (CD89 [FcαR]) receptor expression on effector cells within male and female genital mucosal tissue, colorectal tissue and red blood cell-lysed whole blood. The frequency of FcR expression on CD14+ monocytic cells, myeloid dendritic cells and natural killer cells were similar across the three mucosal tissue compartments, but significantly lower when compared to the FcR expression profile of effector cells isolated from whole blood, with many cells negative for all FcRs. Of the three tissues tested, penile tissue had the highest percentage of FcR positive effector cells. Immunofluorescent staining was used to determine the location of CD14+, CD11c+ and CD56+ cells within the three mucosal tissues. We show that the majority of effector cells across the different mucosal locations reside within the subepithelial lamina propria. The potential implication of the observed FcR expression patterns on the effectiveness of FcR-dependent cellular effector functions to impact on the initial events in mucosal transmission and dissemination warrants further mechanistic studies.
Definition of the key parameters mediating effective antibody blocking of HIV-1 acquisition within mucosal tissue may prove critical to effective vaccine development and the prophylactic use of monoclonal antibodies. Although direct antibody-mediated neutralization is highly effective against cell-free virus, antibodies targeting different sites of envelope vulnerability may display differential activity against mucosal infection. Nonneutralizing antibodies (nnAbs) may also impact mucosal transmission events through Fc-gamma receptor (FcγR)-mediated inhibition. In this study, a panel of broadly neutralizing antibodies (bnAbs) and nnAbs, including those associated with protection in the RV144 vaccine trial, were screened for the ability to block HIV-1 acquisition and replication across a range of cellular and mucosal tissue models. Neutralization potency, as determined by the TZM-bl infection assay, did not fully predict activity in mucosal tissue. CD4-binding site (CD4bs)-specific bnAbs, in particular VRC01, were consistent in blocking HIV-1 infection across all cellular and tissue models. Membrane-proximal external region (MPER) (2F5) and outer domain glycan (2G12) bnAbs were also efficient in preventing infection of mucosal tissues, while the protective efficacy of bnAbs targeting V1-V2 glycans (PG9 and PG16) was more variable. In contrast, nnAbs alone and in combinations, while active in a range of cellular assays, were poorly protective against HIV-1 infection of mucosal tissues. These data suggest that tissue resident effector cell numbers and low FcγR expression may limit the potential of nnAbs to prevent establishment of the initial foci of infection. The solid protection provided by specific bnAbs clearly demonstrates their superior potential over that of nonneutralizing antibodies for preventing HIV-1 infection at the mucosal portals of infection. IMPORTANCE Key parameters mediating effective antibody blocking of HIV-1 acquisition within mucosal tissue have not been defined. While bnAbs are highly effective against cell-free virus, they are not induced by current vaccine candidates. However, nnAbs, readily induced by vaccines, can trigger antibody-dependent cellular effector functions, through engagement of their Fc-gamma receptors. Fc-mediated antiviral activity has been implicated as a secondary correlate of decreased HIV-1 risk in the RV144 vaccine efficacy trial, suggesting that protection might be mediated in the absence of classical neutralization. To aid vaccine design and selection of antibodies for use in passive protection strategies, we assessed a range of bnAbs and nnAbs for their potential to block ex vivo challenge of mucosal tissues. Our data clearly indicate the superior efficacy of neutralizing antibodies in preventing mucosal acquisition of infection. These results underscore the importance of maintaining the central focus of HIV-1 vaccine research on the induction of potently neutralizing antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.