The identification of the Duchenne muscular dystrophy gene and protein in the late 1980s led to high hopes of rapid translation to molecular therapeutics. These hopes were fueled by early reports of delivering new functional genes to dystrophic muscle in mouse models using gene therapy and stem cell transplantation. However, significant barriers have thwarted translation of these approaches to true therapies, including insufficient therapeutic material (eg, cells and viral vectors), challenges in systemic delivery, and immunological hurdles. An alternative approach is to repair the patient's own gene. Two innovative small-molecule approaches have emerged as front-line molecular therapeutics: exon skipping and stop codon read through. Both approaches are in human clinical trials and aim to coax dystrophin protein production from otherwise inactive mutant genes. In the clinically severe dog model of Duchenne muscular dystrophy, the exon-skipping approach recently improved multiple functional outcomes. We discuss the status of these two methods aimed at inducing de novo dystrophin production from mutant genes and review implications for other disorders.
Master protocol studies typically use an overarching protocol to answer several questions by guiding a variety of sub-studies. These sub-studies can incorporate multiple diseases, therapies, or both. Although this innovative approach offers many benefits, including the ability to deliver clinical research that is more patient-centric and efficient, several common barriers curtail widespread adoption. The Clinical Trials Transformation Initiative (CTTI) convened industry representatives, regulatory agencies, patient groups, and academic institutions to identify emerging best practices and develop resources designed to help sponsors and other stakeholders overcome these challenges. We first identify some broad changes needed in the clinical trials ecosystem to facilitate mainstream adoption of master protocol studies, and we subsequently summarize CTTI’s resources designed to support this effort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.