The development of methods to reuse large volumes of plastic waste is essential to curb the environmental impact of plastic pollution. Plastic-reinforced cementitious materials (PRCs), such as plastic-reinforced mortar (PRM), may be potential avenues to productively use large quantities of low-value plastic waste. However, poor bonding between the plastic and cement matrix reduces the strength of PRCs, limiting its viable applications. In this study, calcium carbonate biomineralization techniques were applied to coat plastic waste and improved the compressive strength of PRM. Two biomineralization treatments were examined: enzymatically induced calcium carbonate precipitation (EICP) and microbially induced calcium carbonate precipitation (MICP). MICP treatment of polyethylene terephthalate (PET) resulted in PRMs with compressive strengths similar to that of plastic-free mortar and higher than the compressive strengths of PRMs with untreated or EICP-treated PET. Based on the results of this study, MICP was used to treat hard-to-recycle types 3–7 plastic waste. No plastics investigated in this study inhibited the MICP process. PRM samples with 5% MICP-treated polyvinyl chloride (PVC) and mixed type 3–7 plastic had compressive strengths similar to plastic-free mortar. These results indicate that MICP treatment can improve PRM strength and that MICP-treated PRM shows promise as a method to reuse plastic waste.
Summary
In this manuscript, we describe the second of two field demonstrations of microbially induced calcium carbonate precipitation (MICP) performed in a failed waterflood injection well in Indiana. In 2012, fracture-related flow pathways developed in the wellbore cement, causing injection water to bypass the oil-bearing formation and enter a high-permeability sandstone thief zone, thereby substantially decreasing injection pressure. In the first field demonstration, our study team characterized the well's mode of failure and successfully applied MICP to decrease flow through the defective cement. However, because the MICP treatment was conducted using a bailer delivery system, the degree of permeability reduction achievable was not adequate to fully restore the historic injection pressure of 1,400 psi at 1 gal/min. For the second field demonstration (reported herein), a direct injection system was developed that substantially increased the injection volume of MICP-promoting fluids. Two strategies were implemented to produce more ureolytic microbes: resuspending concentrated frozen cells immediately before injection and scaling up the bioreactor growth capacity. Multiple pulses of microbes and urea-calcium media were pumped into a string of 1-in.-diameter tubing separated by brine spacers and injected continuously at a flow rate of 3.4 to 1.4 gal/min. During the third day of injection, an injection pressure of 1,384 psi at a flow rate of 1.4 gal/min was achieved, and the experiment was terminated. This study demonstrates that MICP can be successfully used in large-volume applications where the time frame for the delivery of reactants is limited. This finding has significant relevance for commercialization of the MICP biotechnology in the oil and gas industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.