<p><span id="docs-internal-guid-df1e3816-7fff-2396-860a-693df6c8ad2e"><span>An independent component analysis (ICA) is one of the solutions of a blind source separation problem. ICA is a statistical approach that depends on the statistical properties of the mixed signals. The purpose of the ICA method is to demix the mixed source signals (observation signals) and rcovering those signals. The abbreviation of the problem is that the ICA needs for optimizing by using one of the optimization approaches as swarm intelligent, neural neworks, and genetic algorithms. This paper presents a hybrid method to optimize the ICA method by using the quantum particle swarm optimization method (QPSO) to optimize the Bigradient neural network method that applies to separate mixed signals and recover sources signals. The results of an implement this work prove that this method gave good results comparing with other methods such as the Bigradient neural network and the QPSO method, based on several evaluation measures as signal-to-noise ratio, signal-to-distortion ratio, absolute value correlation coefficient, and the computation time.</span></span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.