Thin films of cadmium oxide CdO nanoparticles were prepared on glass substrates using pulse laser deposition technique (PLD). N:YAG laser is used with different laser energies (400,500,600,700)mJ, number of shots=100, when preparing all the thin films. The structure and optical characteristics were studied for these films. X-ray diffraction (XRD) results showed that all the prepared thin films were of a polycrystalline type and that the high and dominant crystalline levels were (111) at the angle (2θ =32.986). AFM results demonstrated a grain size of deposited films increase from (50.63-85)nm with laser energy from 400 to 700mJ. Also the absorbance spectrum increases from (0.53-1.45) with increasing laser energy, while the transmittance spectrum decreases with increasing laser energy of all prepared models so that transmittance is (26.53%) at the laser deposit energy (400mJ) until it becomes (1.70%) at the laser deposit energy (700mJ) and at the wavelength (550nm), as for the energy gap it decreases with increasing laser deposit energy and ranges from (2.3-2.5)eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.