In the rural side, due to the absence of cardiovascular ailment centers, around 12 million people passing away worldwide reported by WHO. The principal purpose of coronary illness is a propensity of smoking. Our Cluster based disease Diagnosis (CDD) applies the ML classifiers to improve the prediction accuracy of cardiovascular diseases. For this we have taken a real Cleveland dataset from UCI. First, the ML performance is evaluated through all features. Then, the dataset is split through the class pairs through its distribution. From this class pair, the significant features are identified through entropy process. Through our CDD approach four significant features are identified from thirteen features. From this four features, the ML performance increases when compared to all other features. That is, in RF model the accuracy improves to 9.5%, SVM by 7.2% and DT model by 2.3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.