The Mycobacterium tuberculosis EthR is a member of the TetR family of repressors, controlling the expression of EthA, a mono-oxygenase responsible for the bioactivation of the prodrug ethionamide. This protein was established as a promising therapeutic target against tuberculosis, allowing, when inhibited by a drug-like molecule, to boost the action of ethionamide. Dozens of EthR crystal structures have been solved in complex with ligands. Herein, we disclose EthR structures in complex with 18 different small molecules and then performed in-depth analysis on the complete set of EthR structures that provides insights on EthR-ligand interactions. The 81 molecules solved in complex with EthR show a large diversity of chemical structures that were split up into several chemical clusters. Two of the most striking common points of EthR-ligand interactions are the quasi-omnipresence of a hydrogen bond bridging compounds with Asn 179 and the high occurrence of - interactions involving Phe 110. A systematic analysis of the proteinligand contacts identified eight hot spot residues that defined the basic structural features governing the binding mode of small molecules to EthR. Implications for the design of new potent inhibitors are discussed. Highlights • Eighteen complex structures of EthR have been added to PDB; • All available structural information on EthR has been compiled, analyzed and rationalized; • Common ligand binding hot spots of EthR are defined; • Discrepancies between ligand model and electron density are observed for some structures.
Mycobacterium tuberculosis (M.tb), the etiologic agent of tuberculosis, remains the leading cause of death from a single infectious agent worldwide. The emergence of drug-resistant M.tb strains stresses the need for drugs acting on new targets. Mycolic acids are very long chain fatty acids playing an essential role in the architecture and permeability of the mycobacterial cell wall. Their biosynthesis involves two fatty acid synthase (FAS) systems. Among the four enzymes (MabA, HadAB/BC, InhA and KasA/B) of the FAS-II cycle, MabA (FabG1) remains the only one for which specific inhibitors have not been reported yet. The development of a new LC-MS/MS based enzymatic assay allowed the screening of a 1280 fragment-library and led to the discovery of the first small molecules that inhibit MabA activity. A fragment from the anthranilic acid series was optimized into more potent inhibitors and their binding to MabA was confirmed by 19 F ligand-observed NMR experiments.
The sensitivity of
Mycobacterium tuberculosis
, the pathogen that causes tuberculosis (TB), to antibiotic prodrugs is dependent on the efficacy of the activation process that transforms the prodrugs into their active antibacterial moieties. Various oxidases of
M. tuberculosis
have the potential to activate the prodrug ethionamide. Here, we used medicinal chemistry coupled with a phenotypic assay to select the N-acylated 4-phenylpiperidine compound series. The lead compound, SMARt751, interacted with the transcriptional regulator VirS of
M. tuberculosis
, which regulates the
mymA
operon encoding a monooxygenase that activates ethionamide. SMARt751 boosted the efficacy of ethionamide in vitro and in mouse models of acute and chronic TB. SMARt751 also restored full efficacy of ethionamide in mice infected with
M. tuberculosis
strains carrying mutations in the
ethA
gene, which cause ethionamide resistance in the clinic. SMARt751 was shown to be safe in tests conducted in vitro and in vivo. A model extrapolating animal pharmacokinetic and pharmacodynamic parameters to humans predicted that as little as 25 mg of SMARt751 daily would allow a fourfold reduction in the dose of ethionamide administered while retaining the same efficacy and reducing side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.