Portland cement is the most commonly and widely used binder in ground improvement soil stabilisation applications. However, many changes are now affecting the selection and application of stabilisation additives. These include the significant environmental impacts of Portland cement, increased use of industrial by-products and their variability, increased range of application of binders and the development of alternative cements and novel additives with enhanced environmental and technical performance. This paper presents results from a number of research projects on the application of a number of Portland cement-blended binders, which offer sustainability advantages over Portland cement alone, in soil stabilisation. The blend materials included ground granulated blastfurnace slag, pulverised fuel ash, cement kiln dust, zeolite and reactive magnesia and stabilised soils, ranging from sand and gravel to clay, and were assessed based on their mechanical performance and durability. The results are presented in terms of strength and durability enhancements offered by those blended binders.
MotivationNext generation sequencing (NGS) has provided researchers with a powerful tool to characterize metagenomic and clinical samples in research and diagnostic settings. NGS allows an open view into samples useful for pathogen detection in an unbiased fashion and without prior hypothesis about possible causative agents. However, NGS datasets for pathogen detection come with different obstacles, such as a very unfavorable ratio of pathogen to host reads. Alongside often appearing false positives and irrelevant organisms, such as contaminants, tools are often challenged by samples with low pathogen loads and might not report organisms present below a certain threshold. Furthermore, some metagenomic profiling tools are only focused on one particular set of pathogens, for example bacteria.ResultsWe present PAIPline, a bioinformatics pipeline specifically designed to address problems associated with detecting pathogens in diagnostic samples. PAIPline particularly focuses on userfriendliness and encapsulates all necessary steps from preprocessing to resolution of ambiguous reads and filtering up to visualization in a single tool. In contrast to existing tools, PAIPline is more specific while maintaining sensitivity. This is shown in a comparative evaluation where PAIPline was benchmarked along other well-known metagenomic profiling tools on previously published well-characterized datasets. Additionally, as part of an international cooperation project, PAIPline was applied to an outbreak sample of hemorrhagic fevers of then unknown etiology. The presented results show that PAIPline can serve as a robust, reliable, user-friendly, adaptable and generalizable stand-alone software for diagnostics from NGS samples and as a stepping stone for further downstream analyses.Availability and implementationPAIPline is freely available under https://gitlab.com/rki_bioinformatics/paipline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.