A series of carbon aerogels doped with iron, cobalt and nickel have been prepared. Metal nanoparticles very well dispersed into the carbon matrix catalyze the formation of graphitic clusters around them. Samples with different Ni content are obtained to test the influence of the metal loading. All aerogels have been characterized to analyze their textural properties, surface chemistry and crystal structures. These metal-doped aerogels have a very well-developed porosity, making their mesoporosity remarkable. Ni-doped aerogels are the ones with the largest surface area and the smallest graphitization. They also present larger mesopore volumes than Co- and Fe-doped aerogels. These materials are tested as electro-catalysts for the oxygen reduction reaction. Results show a clear and strong influence of the carbonaceous structure on the whole electro-catalytic behavior of the aerogels. Regarding the type of metal doping, aerogel doped with Co is the most active one, followed by Ni- and Fe-doped aerogels, respectively. As the Ni content is larger, the kinetic current densities increase. Comparatively, among the different doping metals, the results obtained with Ni are especially remarkable.
Two original series of carbon gels doped with different cobalt loadings and well-developed mesoporosity, aerogels and xerogels, have been prepared, exhaustively characterized, and tested as cathodes for the electro-catalytic reduction of CO 2 to hydrocarbons at atmospheric pressure. Commercial cobalt and graphite sheets have also been tested as cathodes for comparison. All of the doped carbon gels catalyzed the formation of hydrocarbons, at least from type C1 to C4. The catalytic activity depends mainly on the metal loading, nevertheless, the adsorption of a part of the products in the porous structure of the carbon gel cannot be ruled out. Apparent faradaic efficiencies calculated with these developed materials were better that those obtained with a commercial cobalt sheet as a cathode, especially considering the much lower amount of cobalt contained in the Co-doped carbon gels. The cobalt-carbon phases formed in these types of doped carbon gels improve the selectivity to C3-C4 hydrocarbons formation, obtaining even more C3 hydrocarbons than CH 4 in some cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.