The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains including realtime monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. Smart UAVs are the next big revolution in UAV technology promising to provide new opportunities in different applications, especially in civil infrastructure in terms of reduced risks and lower cost. Civil infrastructure is expected to dominate the more that $45 Billion market value of UAV usage. In this survey, we present UAV civil applications and their challenges. We also discuss current research trends and provide future insights for potential UAV uses. Furthermore, we present the key challenges for UAV civil applications, including: charging challenges, collision avoidance and swarming challenges, and networking and security related challenges. Based on our review of the recent literature, we discuss open research challenges and draw high-level insights on how these challenges might be approached.
IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Abstract: We propose a localization technique by fusing multiple classifiers based on received signal strengths (RSSs) of visible light in which different intensity-modulated sinusoidal signals emitted by LEDs are captured by photodiodes placed at various grid points. First, we obtain some approximate RSSs fingerprints by capturing the peaks of power spectral density of the received signals at each given grid point. Unlike the existing RSSs-based algorithms, several representative machine learning algorithms are adopted to train multiple classifiers based on these RSSs fingerprints. Then, two robust fusion localization algorithms, namely, grid-independent least square and grid-dependent least square (GD-LS), are proposed to combine the outputs of these classifiers. A singular value decomposition (SVD)-based LS (LS-SVD) method is proposed to mitigate the numerical stability problem when the prediction matrix is singular. Experiments conducted on an intensity-modulated direct detection system show that the probability of having mean square positioning error of less than 5 cm achieved by GD-LS is improved by 93.03% and 93.15%, respectively, as compared to those by the RSS ratio and RSS matching methods with the fast Fourier transform length of 2000.Index Terms: Indoor positioning, visible light communications (VLC), received signal strengths (RSSs) fingerprints, intensity modulated direct detection (IM/DD), machine learning, fusion localization.
Abstract-We consider joint caching, routing, and channel assignment for video delivery over coordinated small-cell cellular systems of the future Internet. We formulate the problem of maximizing the throughput of the system as a linear program in which the number of variables is very large. To address channel interference, our formulation incorporates the conflict graph that arises when wireless links interfere with each other due to simultaneous transmission. We utilize the column generation method to solve the problem by breaking it into a restricted master subproblem that involves a select subset of variables and a collection of pricing subproblems that select the new variable to be introduced into the restricted master problem, if that leads to a better objective function value. To control the complexity of the column generation optimization further, due to the exponential number of independent sets that arise from the conflict graph, we introduce an approximation algorithm that computes a solution that is within ǫ to optimality, at much lower complexity. Our framework demonstrates considerable gains in average transmission rate at which the video data can be delivered to the users, over the state-of-the-art Femtocaching system, of up to 46%. These operational gains in system performance map to analogous gains in video application quality, thereby enhancing the user experience considerably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.