TiO2 nanoribbons (TiO2 NRs) loaded with FeCo-Al2O3 catalyst were synthesized and used as a precursor in the synthesis of TiO2 nanoribbons/carbon nanotubes (TiO2 NRs/CNTs) composite by a chemical vapor deposition (CVD) method. TiO2 NRs and TiO2 NRs/CNTs composite were characterized by XRD, FT-IR, TEM, SEM, EDX and UV-Vis spectrophotometer. The results revealed the formation of TiO2-B and hydrogen titanate nanoribbon like structures by the hydrothermal treatment. After loading TiO2 NRs by FeCo-Al2O3 catalyst and the CVD growth of carbon nanotubes, the synthetic TiO2 nanoribbons converted entirely to TiO2-B nanoribbons with nanopits structure. The composite composed of tube-like nanostructures forming an interlocked network from CNTs and TiO2-B NRs. The composite shows a relatively red-shifted band gap (3.09 eV), broader and stronger UV absorption band relative to TiO2 NRs. The photocatalytic properties of TiO2 NRs and TiO2 NRs/CNTs composite were studied under sunlight irradiation. The photocatalytic degradation of methylene blue (MB) dye was investigated as a function of contact time, dye concentration, and catalyst dose. The kinetics and mechanisms of degradation were discussed. TiO2 NRs/CNTs composite showed higher stability after six runs and 50% shorter irradiation time than TiO2 NRs photocatalyst.
Nanofiltration methods were used and evaluated for strontium removal from wastewater. The phase inversion method was used to create a variety of polyethersulfone (PES)/TiO2 nanoribbons (TNRs)–multi-walled carbon nanotubes (MWCNTs) membranes with varied ratios of TNR-MWCNT nanocomposite. The hydrothermal technique was applied to synthesize the nanocomposite (TNRs-MWCNTs), which was then followed by chemical vapor deposition (CVD). The synthesized membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy, and FTIR. TNR macrovoids are employed as a support for the MWCNT growth catalyst, resulting in a TNR-MWCNT network composite. The hydrophilicity, mechanical properties, porosity, filtration efficiency of the strontium-containing samples, water flux, and fouling tendency were used to assess the performance of the synthesized membranes. The effect of feed water temperature on water flux was investigated as well as its effect on salt rejection. As the temperature increased from 30 to 90 °C, the salt rejection decreased from 96.6 to 82% for the optimized 0.7 PES/TNR-MWCNT membrane, whereas the water flux increased to ≈150 kg/m2. h. Double successive filtration was evaluated for its high efficiency of 1000 ppm strontium removal, which reached 82.4%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.