Recently, it has been shown that the quantum Fisher information via local observables and via local measurements (i.e., local quantum Fisher information (LQFI)) is a central concept in quantum estimation and quantum metrology and captures the quantumness of correlations in multi-component quantum system [S. Kim et al., Phys. Rev. A. 97, 032326 (2018)]. This new discord-like measure is very similar to the quantum correlations measure called local quantum uncertainty (LQU). In the present study, we have revealed that LQU is bounded by LQFI in the phase estimation protocol. Also, a comparative study between these two quantum correlations quantifiers is addressed for the quantum Heisenberg XY model. Two distinct situations are considered. The first one concerns the anisotropic XY model and the second situation concerns isotropic XY model submitted to an external magnetic field. Our results confirm that LQFI reveals more quantum correlations than LQU.
The quantum Fisher information matrix provides us with a tool to determine the precision, in any multiparametric estimation protocol, through quantum Cramér-Rao bound. In this work, we study simultaneous and individual estimation strategies using the density matrix vectorization method. Two special Heisenberg XY models are considered. The first one concerns the anisotropic XY model in which the temperature T and the anisotropic parameter γ are estimated. The second situation concerns the isotropic XY model submitted to an external magnetic field B in which the temperature and the magnetic field are estimated. Our results show that the simultaneous strategy of multiple parameters is always advantageous and can provide a better precision than the individual strategy in the multiparameter estimation procedures.
We explore the spontaneous generation and decay of quantum correlations between two identical atoms coupled to a common Markovian environment in the presence of electromagnetic field modes. For this purpose, we analyze the dynamics of quantum correlations by employing the concurrence, the trace quantum discord and the local quantum uncertainty, for collective Dicke states. It is shown that the collective damping and dipole-dipole interaction plays a key role in enhancing nonclassical correlations during the process of intrinsic decoherence. The quantum correlations can be maintained over a long time but for small distance between the two atoms.
We employ the concepts of local quantum uncertainty and geometric quantum discord based on the trace norm to investigate the environmental effects on quantum correlations of two bipartite quantum systems. The first one concerns a two-qubit system coupled with two independent bosonic reservoirs. We show that the trace discord exhibits frozen phenomenon contrarily to local quantum uncertainty. The second scenario deals with a two level system, initially prepared in a separable state, interacting with a quantized electromagnetic radiation.Our results show that there exists an exchange of quantum correlations between the two-level system and its surrounding which is responsible of the revival phenomenon of non classical correlations.Keywords: Local quantum uncertainty. Geometric quantum discord. Non classical correlations. Dynamics of two-qubit system. Frozen and revival quantum correlations. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.