Ventilation for underground carparks is critical to indoor air quality (IAQ) due to carbon monoxide (CO) emissions from cars. The IAQ within a multi-level underground carpark of a shopping mall has been investigated using computational fluid dynamics (CFD) model based on ANSYS-FLUENT (18.1) software. The effects of car engines types, porosity of supply and exhaust air louvers and ventilation flow rates on IAQ were examined. A mesh sensitivity study was conducted and the CFD model was validated against the fully mixed mathematical formulations of IAQ with a maximum difference in values of 1.5 ppm and an error of 3.4%. The results showed that the ventilation system must be operated at ACH value of more than 2.7 in order to meet the required CO concentration of 50 ppm within the carpark and should be based on running cars within each level rather than the parking capacity of each level. Porosity of louvers affected air flow distribution between parking levels and led to higher dilution of CO. Therefore, modelling a multilevel underground carpark requires closer attention to cross level interaction across Ramps which could affect the CO concentration within a given level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.