Electronic and optical properties of graphene oxide (GO), under an external electric field (Eext) applied in three directions of space (x, y, z), are investigated using the density functional theory (DFT). The application of the Eext, causes a significant modifications to the electronic and optical properties of GO material. It has change the band gap, total density of states (TDOS), partial density of states (PDOS), absorption coefficient (α), dielectric function, optical conductivity, refractive index and loss function. The band gap of GO layer increases under the effects of the Eext, applied in x and y directions. On the other hand, for z direction, the band gap decreases by the effects of the Eext. The peaks of the TDOS around the Fermi level, change by the Eext applied in (x, y, z) directions. The α peaks of the GO sheet, decreases by the Eext applied in x direction, and increases if Eext applied in y and z directions. It is found that, the electronic and optical properties of GO layer, could be affected by the effects of the Eext and by its direction of application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.